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Abstract

We present a system that can separate and recognize the simultaneous speech of two people recorded in a single chan-
nel. Applied to the monaural speech separation and recognition challenge, the system out-performed all other participants
– including human listeners – with an overall recognition error rate of 21.6%, compared to the human error rate of 22.3%.
The system consists of a speaker recognizer, a model-based speech separation module, and a speech recognizer. For the
separation models we explored a range of speech models that incorporate different levels of constraints on temporal
dynamics to help infer the source speech signals. The system achieves its best performance when the model of temporal
dynamics closely captures the grammatical constraints of the task. For inference, we compare a 2-D Viterbi algorithm
and two loopy belief-propagation algorithms. We show how belief-propagation reduces the complexity of temporal infer-
ence from exponential to linear in the number of sources and the size of the language model. The best belief-propagation
method results in nearly the same recognition error rate as exact inference.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Factorial hidden Markov model; Speech separation; Algonquin; Multiple talker speaker identification; Speaker-dependent
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1. Introduction

One of the hallmarks of human perception is our ability to solve the auditory cocktail party problem: we
can direct our attention to a given speaker in the presence of interfering speech, and understand what was said
remarkably well. The same cannot be said for conventional automatic speech recognition systems, for which
interfering speech is extremely detrimental to performance.

There are several ways to approach the problem of noise-robust speech recognition (see Cooke et al., 2009
for an overview of the current state of the art). This paper presents a model-based approach to the problem,
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Table 1
Overall word error rates across all conditions on the challenge task. Human: average human error rate; IBM: our best result; Next best: the
best of the other published results on the challenge task Virtanen (2006); No processing: our recognizer without any separation; and
Chance: the theoretical error rate for random guessing.

System Human (%) IBM (%) Next best (%) No processing (%) Chance (%)

Word error rate 22.3 21.6 34.2 68.2 93.0
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which utilizes models of both the target speech, the acoustic background, and the interaction between the
acoustic sources to do robust speech separation and recognition. The system addresses the monaural speech

separation and recognition challenge task (Cooke et al., 2009), and outperforms all other results published
to date on this task. The goal of speech separation challenge task (Section 2) is to recognize the speech of
a target speaker, using single-channel data that is corrupted by an interfering talker. Both speakers are con-
strained to be from a closed speaker set, and conform to a specific grammar. An interesting aspect of the chal-
lenge is that the organizers have conducted listening experiments to characterize human recognition
performance on the task. The overall recognition performance of our system exceeds that of humans on on
the challenge data (see Table 1).

The system is composed of three components: a speaker recognizer, a separation system, and a single-talker
speech recognizer, as shown in Fig. 1. The core component of the system is the model-based separation mod-
ule. The separation system is based upon a factorial hidden Markov model (HMM) that incorporates multiple
layers of constraints on the temporal dynamics of the sources. Single-channel speech separation has previously
been attempted using Gaussian mixture models (GMMs) on individual frames of acoustic features. However
such models tend to perform well only when speakers are of different gender or have rather different voices
(Kristjansson et al., 2004).

When speakers have similar voices, speaker-dependent mixture models cannot unambiguously identify
the component speakers. In such cases it is helpful to model the statistical dependencies across time.
Several models in the literature have done so for single-talker recognition (Varga and Moore, 1990;
Gales and Young, 1996) or enhancement (Ephraim, 1992; Roweis, 2003). Such models have typically been
based on a discrete-state hidden Markov model (HMM) operating on a frame-based acoustic feature
vector.

Conventional speech recognition systems use a smoothed log spectrum in which the effects of the harmonic
structure of the voice are removed. This harmonic structure is associated with the pitch of the voice, whereas
only the formant structures, retained in the smoothed log spectrum, are thought to be relevant to speech rec-
ognition in non-tonal languages. However, with multiple speakers, voices tend to largely overlap and obscure
each other in the smoothed log spectrum. In contrast, in the full (high-resolution) log spectrum, the different
harmonic structures of the two voices greatly decreases the amount of overlap. Our separation system thus
operates directly on the log spectrum. A caveat is that modeling the dynamics of speech in the log spectrum
is challenging in that different components of speech, such as the pitch and the formant structure of the voice,
evolve at different time-scales.

We address the issue of dynamics by testing four different levels of dynamic constraints in our separation
model: no dynamics, low-level acoustic dynamics, high-level grammar dynamics, and a layered combination,
dual dynamics, of the acoustic and grammar dynamics. The acoustic dynamics constrain the short-term
dynamics of the pitch and formant structure together, whereas the grammar constrains the dynamics of the
formant structure. In the dual dynamics condition the acoustic dynamics are intended to make up for the lack
of constraints on the pitch. In the experiments we have conducted to date, grammar-level dynamics are nec-
essary to achieve the best results. However, we have not yet seen a significant benefit of the additional acoustic
constraints in the dual-dynamics model.

The acoustic models of the speakers in the system are combined to model the observed speech mixtures
using two different methods: a nonlinear model known as Algonquin (Kristjansson et al., 2004), which models
the combination of log-spectrum models as a sum in the power spectrum, and a simpler max model that com-
bines two log spectra using the max function.
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Fig. 1. System overview. The speaker recognizer (Section 7), first estimates the speaker identities and gains of both talkers. The separation
system (Section 3) combines the task grammar with speaker-dependent acoustic models and an acoustic interaction model to estimate two
sets of sources; one set based on the hypothesis that speaker a is the target (H1), the other on the hypothesis that speaker b is the target
(H2). The single-talker speech recognition system then recognizes each signal using speaker-dependent labeling (Section 8) and outputs the
target decoding result that yields the highest likelihood.
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For a given separation model topology and inference algorithm, Algonquin and the max model perform
comparably in terms of word recognition rate (WER) on the challenge: within 1% absolute overall. However
the max model is considerably faster and can be run exactly, whereas Algonquin is too slow to run without the
use of optimization tricks. Among other tricks, we employed band quantization (Linde et al., 1980; Bocchieri,
1993), which reduced the number of operations required to compute the acoustic likelihoods by several orders
of magnitude.

Exact inference in the separation model can be done efficiently by doing a Viterbi search over the joint state
space of the sources that exploits the factorial structure of the model. This approach, however, still scales
exponentially with acoustic and language model size, and therefore cannot be easily be applied to larger
problems.

In this paper, we additionally present a new iterative algorithm for approximate inference that employs the
loopy belief propagation method to make inference scale linearly with language model size. The WER perfor-
mance of this approach closely matches that of our joint inference algorithm at a fraction of the computa-
tional cost. When the identities and gains of the sources are known, the loopy belief propagation method
still surpasses the average performance of humans on the task.

The performance of our best system, which does joint inference and exploits the grammar constraints of the
task, is remarkable: the system is often able to accurately extract two utterances from a mixture even when
they are from the same speaker.1 Overall results on the challenge are given in Table 1, which shows that
our closest competitors are human listeners.2

This paper is organized as follows. Section 2 describes the speech separation task. Sections 3 and 4 describe
the speech models and speech interaction models used by our separation system. Section 5 describes how tem-
poral inference can be done efficiently using a factorial Viterbi search, and in linear time using loopy belief
propagation. Section 6 describes how band quantization, joint-state pruning, and an approximate max model
can be used to efficiently compute the joint acoustic likelihoods of the speakers. Section 7 describes the multi-
talker speaker recognition component of the system, which is based upon a simple expectation–maximization
(EM) algorithm that exploits the temporal sparsity of speech to identify multiple speakers in linear time. Sec-
tion 8 describes the speech recognition component of our system, which incorporates SDL: a speaker-adap-
tation strategy that actually performs better than using oracle knowledge of the target speaker’s identity.
1 Demos and information can be found at: http://www.research.ibm.com/speechseparation/.
2 The different speaker conditions receive unequal weights, due to the distribution of the test set. With equal weights, the humans achieve

a task error rate of 21.8%, compared to 20.6% for our system.
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Fig. 2. Task grammar. Note that the letter W is excluded. An example sentence would be ‘‘lay white with G six please”.
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Section 9 characterizes the performance of our system as a function of separation model topology and infer-
ence algorithm. We also discuss new experiments that vary the task constraints to determine the effect of dif-
ferent aspects of the task on performance. In order to remove the effect of the speaker recognizer, oracle
speaker IDs and gains were used for these experiments. The WER performance of our best system with oracle
speaker IDs and gains is 19.0%. We present results for the following cases, (a) using gender-dependent models
instead of speaker-dependent background models: 23.1%; (b) when the background grammar is an unordered
bag of words: 23.2%; (c) when the transcripts of the speakers are known: 7.6%, and (d) when the speech signals
are iteratively inferred using a loopy belief propagation algorithm: 22.1%.
2. The speech separation and recognition challenge

The main task in the monaural speech separation and recognition challenge is to recognize the speech
of a target speaker in the presence of another, masking speaker, using a single microphone. The speech
data are drawn from the recently-collected GRID corpus (Cooke et al., 2006), which consists of simple
sentences drawn from the grammar in Fig. 2. The specific task is to recognize the letter and digit spoken
by the target speaker, where the target speaker always says ‘‘white” while the masker says ‘‘blue”, ‘‘green”
or ‘‘red”.

The development and test data consists of mixtures that were generated by additively mixing target and
masking utterances at a range of signal-to-noise ratios (SNRs): 6, 3, 0, �3, �6, and �9 dB.

The test set has 600 mixed signals at each SNR: 221 where the target and masker are the same speaker, 179
where the target and masker are different speakers of the same gender, and 200 where the target and masker
are of different gender. The development set is similar but half the size at 300 mixtures per SNR.

The target and masking speakers are chosen from a closed set of 34 speakers, consisting of 16 female and 18
male subjects. Clean training data, consisting of 500 utterances from each speaker, was provided for learning
speech models.

The challenge also provides a stationary noise development and test set, where the task is to recognize the
speech of the target speaker in the presence of ‘‘speech-shaped” stationary noise. The test data consists of mix-
tures that were generated by additively mixing the target utterance with speech-shaped noise at the following
SNRs: 6, 0, �6, and �12 dB.

In this paper, our focus will be on the primary task of the challenge: separating speech from speech. We use
the the stationary noise condition to adapt our speech recognizer.
3. Speech separation models

The separation system consists of an acoustic model and a temporal dynamics model for each speaker, as
well as an acoustic interaction model, which describes how the source features are combined to produce the
observed mixture spectrum. The acoustic features consist of short-time windowed log spectra, computed
every 15 ms, to produce T frames for each test signal. Each 40 ms frame is analyzed using a 640-point
mixed-radix FFT. After discarding the DC component, the log power spectrum feature vector y has
F ¼ 319 dimensions.
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Fig. 3. Graph of models for a given source. In (a) there are no dynamics, so the model is a simple mixture model. In (b) only acoustic
dynamics are modeled. In (c) grammar dynamics are modeled, with the grammar state variables sharing the same acoustic Gaussians, in
(d) dual – grammar and acoustic – dynamics have been combined. Note that (a), (b), and (c) are special cases of (d), with different
assumptions of independence.
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3.1. Acoustic model

For a given speaker a we model the conditional probability of the log power spectrum of each source signal
xa given a discrete acoustic state sa as Gaussian, pðxajsaÞ ¼ Nðxa; lsa ;RsaÞ, with mean lsa and covariance matrix
Rsa . For efficiency and tractability we restrict the covariance to be diagonal. This means that
pðxajsaÞ ¼

Q
f Nðxa

f ; lf ;sa ; r2
f ;saÞ, for frequency f. Hereafter we drop the f when it is clear from context that

we are referring to a single frequency. We used Ds ¼ 256 Gaussians to model the acoustic space of each
speaker. A model with no dynamics can be formulated by producing state probabilities pðsaÞ, and is depicted
in Fig. 3a.
3.2. Acoustic dynamics

To capture the low-level dynamics of the acoustic signal, we model the acoustic dynamics of a given
speaker, a, via state transitions pðsa

t jsa
t�1Þ as shown in Fig. 3. There are 256 acoustic states, hence for each

speaker a, we estimate 256� 256 transition probabilities.
3.3. Grammar dynamics

We use a dictionary of pronunciations to map from the words in the task grammar to sequences of three-
state context-dependent phoneme models. The states of the phonemes of each word in the grammar are
uniquely identified by a grammar state, va. The entire task grammar can then be represented by a sparse matrix
of state transition probabilities, pðva

t jva
t�1Þ.

The association between the grammar state va and the acoustic state sa is captured by the transition prob-
ability pðsajvaÞ, for speaker a. These are learned from clean training data using inferred acoustic and grammar
state sequences. The grammar state sequences are computed by alignment with the reference text, using a
speech recognizer with the same set of grammar states. The acoustic state sequences are computed using
the acoustic model above. The grammar of our system has 506 states, so we estimate 506 � 256 conditional
probabilities.
Please cite this article in press as: Hershey, J.R. et al., Super-human multi-talker speech recognition: ..., Computer
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3.4. Dual dynamics

The dual-dynamics model combines the acoustic dynamics with the grammar dynamics. In general using
the full combination of s and v states in the joint transitions pðsa

t jsa
t�1; vtÞ would make learning and inference

expensive. Instead, we approximate this as 1
z pðsa

t jsa
t�1Þ

apðsa
t jvtÞb, where a and b adjust the relative influence of

the two probabilities, and z is the normalizing constant.
Note that all of the speech separation models use a common set of acoustic Gaussians pðxajsaÞ. This serves

two purposes. First, it allows the different architectures to be compared on an equal footing. Second, it can be
more efficient than having separate GMMs for each grammar state, since we have fewer Gaussians to evaluate.

4. Acoustic interaction models

The short-time log spectrum of the mixture yt, in a given frequency band, is related to that of the two
sources xa

t and xb
t via the acoustic interaction model given by the conditional probability distribution,

pðytjxa
t ; x

b
t Þ. We consider only interaction models that operate independently on each frequency for analytical

and computational tractability. The joint distribution of the observation and source in one feature dimension,
given the source states is thus:
Plea
Spee
p yt; x
a
t ; x

b
t jsa

t ; s
b
t

� �
¼ p ytjxa

t ; x
b
t

� �
p xa

t jsa
t

� �
p xb

t jsb
t

� �
: ð1Þ
To infer and reconstruct speech we need to compute the likelihood of the observed mixture given the acoustic
states,
p ytjsa
t ; s

b
t

� �
¼
Z

p yt; x
a
t ; x

b
t jsa

t ; s
b
t

� �
dxa

t dxb
t ; ð2Þ
and the posterior expected values of the sources given the acoustic states and the observed mixture,
E xa
t jyt; s

a
t ; s

b
t

� �
¼
Z

xa
t p xa

t ; x
b
t jyt; s

a
t ; s

b
t

� �
dxa

t dxb
t ; ð3Þ
and similarly for xb
t . These quantities, combined with a prior model for the joint state sequences fsa

1::T ; s
b
1::Tg,

allow us to compute the minimum mean squared error (MMSE) estimators Eðxa
1::T jy1::T Þ or the maximum a

posteriori (MAP) estimate Eðxa
1::T jy1::T ; ŝa

1::T ; ŝb
1::T Þ, where ŝa

1::T ; ŝ
b
1::T ¼ arg maxsa

1::T
;sb

1::T
pðsa

1::T ; s
b
1::T jy1::T Þ, and the

subscript, 1::T , refers to all frames in the signal.
The acoustic interaction model can be defined in a number of ways. We explore two popular candidates, for

which the integrals in (2) and (3) can be readily computed: Algonquin, and the max model.

4.1. Algonquin

The discrete Fourier transform is linear: a linear mixture of two signals in the time domain is equivalent to a
mixture, Y ¼ X a þ X b, of their complex Fourier coefficients X a and X b, in each frequency band. Thus in the
power spectrum domain we have
jY tj2 ¼ jX a
t j

2 þ jX b
t j

2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX a

t jjX b
t j

q
cos ht; ð4Þ
where ht is the phase angle between the two sources. When using models that ignore phase, it is reasonable to
assume that the phase difference between two independent signals is uniformly distributed. The phase term
above then has zero mean, and we are left with the following expected value:
jY tj2 � Eh jY tj2
��� jX a

t j; jX b
t j

� �
¼ jX a

t j
2 þ jX b

t j
2 ð5Þ
Taking this approximation into the log power spectrum domain, where xa
t ¼

def
log jX a

t j
2 (and similarly for xb

t ,
and yt) we have:
yt � log expðxa
t Þ þ expðxb

t Þ
� �

ð6Þ
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Fig. 4. Model combination for two-talkers. The interaction model (a) is used to link the two sources models to form (b) the full two
speaker dual dynamics model, where we have simplified the graph by integrating out xa and xb. The other models are special cases of this
graph with different edges removed, as in Fig. 3.
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Algonquin models the approximation error using a Gaussian in the log domain:
Plea
Spee
p ytjxa
t ; x

b
t

� �
¼ N yt; log expðxa

t Þ þ expðxb
t Þ

� �
;w

� �
ð7Þ
where the variance, w, allows for uncertainty about the phase (Kristjansson et al., 2004). An iterative Newton–
Laplace method is used to linearize log ðexpðxa

t Þ þ expðxb
t ÞÞ, and approximate the conditional posterior

pðxa
t ; x

b
t jyt; s

a
t ; s

b
t Þ as Gaussian. This allows us to analytically compute the observation likelihood pðytjsa

t ; s
b
t Þ

and expected value Eðxa
t jyt; s

a
t ; s

b
t Þ. The Algonquin method is well documented elsewhere, for example in Frey

et al. (2001).

4.2. Max model

It was recently shown in Radfar et al. (2006) that if the phase difference between two signals is uniformly
distributed, then the expected value of the log power of the sum of the signals is
Eh ytjxa
t ; x

b
t

� �
¼ max xa

t ; x
b
t

� �
: ð8Þ
The max model uses this expected value as an approximate likelihood function,
p ytjxa
t ; x

b
t

� �
¼ dyt�max xa

t ;x
b
tð Þ ð9Þ
where dð:Þ is a Dirac delta function. The max model was originally introduced as a heuristic approximation. It
was first used in Nádas et al. (1989) for noise adaptation. In Varga and Moore (1990), such a model was used
to compute state likelihoods and find the optimal state sequence. In Roweis (2003), a simplified version of the
max model was used to infer binary masking values for refiltering.

Here we compute feature posteriors, so that we can compute the MMSE estimators for the log power spec-
trum. The max model likelihood function is piece-wise linear and thus admits a closed form solution for the
posterior, pðxa; xbjy; sa; sbÞ, and the necessary integrals. Fig. 5 illustrates the posterior. The likelihood of the
observation given the states is
p ytjsa
t ; s

b
t

� �
¼ pxa

t
ytjsa

t

� �
Uxb

t
ytjsb

t

� �
þ pxb

t
ytjsb

t

� �
Uxa

t
ytjsa

t

� �
; ð10Þ
using pxa
t
ðytjsa

t Þ ¼
def pðxa

t ¼ ytjsa
t Þ for random variable xa

t , and the normal cumulative distribution function
Uxa

t
ðytjsa

t Þ ¼
R yt

�1 Nðxa
t ; lsa

t
; r2

sa
t
Þdxa

t .
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Fig. 5. Max model: (a) the prior normal density, pðxajsaÞ � pðxbjsbÞ is shown for a single feature dimension. Its intersection with likelihood
delta function dy�maxðxa ;xbÞ, for y ¼ 0, is represented by the red contour. (b) the likelihood, pðy ¼ 0jsa; sbÞ is the integral along this contour,
and the posterior, pðxa; xbjy ¼ 0; sa; sbÞ is the prior evaluated on this contour, normalized to integrate to one. Marginal expected values can
be easily computed from this posterior since it is composed of truncated Gaussians. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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The expected value of the hidden source, given the observation and the hidden states, is
Plea
Spee
E xa
t jyt; s

a
t ; s

b
t

� �
¼ payt þ pb lsa

t
�

r2
sa

t
pxa

t
ðytjsa

t Þ
Uxa

t
ðytjsa

t Þ

 !
; ð11Þ
where pa ¼ pxa
t
ðytjsa

t ÞUxb
t
ðytjsb

t Þ=pðytjsa
t ; s

b
t Þ and pb ¼ 1� pa. Eqs. (10) and (11) were first derived in Nádas et al.

(1989).

5. Temporal inference

In Hershey et al. (2006) exact inference of the state sequences (temporal inference), was done using factorial
HMM 2-D Viterbi search, for the grammar dynamics model. Given the most likely state sequences for both
speakers, MMSE estimates of the sources are computed using Algonquin or the max model. Once the log spec-
trum of each source is estimated, we estimate the corresponding time domain signal as described in Kristjans-
son et al. (2004).

The exact inference algorithm can be derived by combining the state variables, into a joint state st ¼ ðsa
t ; s

b
t Þ

and vt ¼ ðva
t ; v

b
t Þ as shown in Fig. 6. The model can then be treated as a single hidden Markov model with tran-

sitions given by pðva
t jva

t�1Þ � pðvb
t jvb

t�1Þ and likelihoods from Eq. (1). However inference is more efficient if the
two-dimensional Viterbi search is used to find the most likely pair of state sequences va

1::T , vb
1::T . We can then

perform an MMSE estimate of the sources by averaging over the posterior probability of the mixture compo-
nents given the grammar Viterbi sequence, and the observations.

On the surface, the 2-D Viterbi search would seem to be of complexity OðTD4Þ, because it requires finding
for each of D � D states at the current time t the best of D � D states at the previous time t � 1. In fact, it can
be computed in OðTD3Þ operations. This stems from the fact that the dynamics for each chain are independent.
The forward–backward algorithm for a factorial HMM with N source models requires only OðTNDNþ1Þ rather
than the OðTD2N Þ required for a naive implementation (Ghahramani and Jordan, 1995). Here we show how
this can be achieved for the Viterbi algorithm.

In the 2-D Viterbi algorithm, the following recursion is used to compute, for each hypothesis of va
t and vb

t ,
the probability of the most likely joint state sequence leading up to that pair of states, given all observations up
to the previous time step:
q va
t ; v

b
t

� �
¼ max

va
t�1

;vb
t�1

p va
t jva

t�1

� �
p vb

t jvb
t�1

� �
p yt�1jva

t�1; v
b
t�1

� �
q va

t�1; v
b
t�1

� �
; ð12Þ
where we define qðva
1; v

b
1Þ ¼ pðva

1Þpðvb
1Þ. This joint maximization can be performed in two steps, in which we

store the intermediate maxima:
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Fig. 6. Cartesian product model: Here we graph the full two-talker grammar dynamics model with acoustic and grammar states combined
across talkers into single Cartesian product states, and with xa and xb integrated out for simplicity. In the dual dynamics model acoustic
states are also connected across time, introducing cycles into the graph.
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Plea
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~q va
t�1; v

b
t

� �
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vb
t�1

p vb
t jvb

t�1

� �
p yt�1jva

t�1; v
b
t�1

� �
q va

t�1; v
b
t�1

� �
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q va
t ; v

b
t

� �
¼ max

va
t�1

p va
t jva

t�1

� �
~q va

t�1; v
b
t

� �
: ð14Þ
We also store the value of vb
t�1 that maximizes (13) for each value of va

t�1 and vb
t :
~vb
t�1 va

t�1; v
b
t

� �
¼ arg max

vb
t�1

p vb
t jvb

t�1

� �
p yt�1jva

t�1; v
b
t�1

� �
q va

t�1; v
b
t�1

� �
; ð15Þ
For each hypothesis of va
t and vb

t , we use (14) to get the optimal value of va
t�1:
v̂a
t�1 va

t ; v
b
t

� �
¼ arg max

va
t�1

p va
t jva

t�1

� �
~q va

t�1; v
b
t

� �
: ð16Þ
This result is used with (15) to get the corresponding optimal value of vb
t�1:
v̂b
t�1 va

t ; v
b
t

� �
¼ ~vb

t�1 v̂a
t�1 va

t ; v
b
t

� �
; vb

t

� �
: ð17Þ
The two maximizations require OðD3Þ operations with OðD2Þ storage for each time step. This generalizes read-
ily to the N-dimensional Viterbi search, using OðTNDNþ1Þ operations.

A similar analysis applies to computing the grammar state likelihood pðyjva; vb; . . . vN Þ. Naively the com-
plexity would be OðNDN

s DN
v Þ for each time step. However, we can take advantage of the factorial structure

of the model, pðsa; sb; . . . ; sN jva; vb . . . vNÞ ¼ pðsa; sb; . . . ; sNÞpðsajvaÞpðsbjvbÞ . . . pðsN jvN Þ, to reduce this complex-
ity to Oð

PN
k¼1DN�kþ1

s Dk
vÞ 6 OðNDNþ1Þ, where D ¼ maxðDs;DvÞ.

5.1. Belief propagation

The 2-D Viterbi search suffers from a combinatorial explosion in the number of speakers and grammar
states, with complexity OðTNDNþ1

v Þ for the grammar dynamics model. This is because it requires evaluating
the joint grammar states ðva

t ; v
b
t Þ of the sources at each time step. Instead, we can do inference by iteratively

updating the sub-models of each speaker. Using the max-product belief propagation method, Kschischang
et al., 2001, temporal inference can be accomplished with complexity OðTND2

vÞ, scaling linearly in the num-
ber of speakers. In addition to decoupling the grammar state dynamics across sources, the max-product
algorithm also decouples the acoustic to grammar state interaction across sources. This reduces the com-
plexity of the acoustic to grammar state interaction from OðNDNþ1Þ to OðNDsDvÞ per iteration for each time
step.

The max-product inference algorithm can be viewed as a generalization of the Viterbi algorithm to arbi-
trary graphs of random variables. For any probability model defined over a set of random variables x , fxig:
pðxÞ /
Y
C2S

fC xCð Þ ð18Þ
where the factors fCðxCÞ are defined on (generally overlapping) subsets of variables xC , fxi : i 2 Cg, and
S ¼ fCg.
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Inference using the max-product algorithm consists of iteratively passing messages between ‘‘connected”

random variables of the model; variables of the model that share common factor(s). For a given random var-
iable xi, the message from variable set xCni , fxj : i 2 C; j – i 2 Cg to xi is given by
Plea
Spee
mxCni!xiðxiÞ ¼ max
xCni

fCðxCÞ
Y
j2Cni

qðxjÞ
mxCnj!xjðxjÞ

; ð19Þ
where
qðxiÞ ¼
Y
C:i2C

mxCni!xiðxiÞ
is the product of all messages to variable xi from neighboring variables.
The maximizing arguments of the max operation in (19) are also stored:
x̂CniðxiÞ ¼ arg max
xCni

fCðxCÞ
Y
j2Cni

qðxjÞ
mxCnj!xjðxjÞ

: ð20Þ
These point from each state of the variable xi to the maximizing state combination of the variables xCni.
The product of all the messages coming into any variable xi provides an estimate of the probability of the

maximum a posteriori (MAP) configuration of all other variables xj–i ¼ fxj : j – ig in the probability model,
as a function of xi:
q xið Þ � k max
xj – i

p xj – i; xi

� �
: ð21Þ
where k is a normalizing constant. Optimization consists of passing messages according to a message

passing schedule. When the probability model is tree-structured, the global MAP configuration of the vari-
ables can be found by propagating messages up and down the tree, and then ‘‘decoding”, by recursively
evaluating x̂CniðxiÞ8C : i 2 C, starting from any xi. Normally for efficiently, messages are propagated only
from the leaves to a chosen root variable. The global MAP configuration can then be obtained by
recursively evaluating x̂CniðxiÞ, starting at the root. For HMMs, this procedure reduces to the Viterbi
algorithm.

In models such as ours that contain cycles, the messages must be iteratively updated and propagated in all
directions. There is, moreover, no guarantee that this approach will converge to the global MAP configuration
of the variables. If the algorithm does converge (meaning that all conditional estimates x̂CniðxiÞ are consistent),
the MAP estimate is provably optimal over all tree and single-loop sub-structures of the probability model
(Weiss and Freeman, 2001). Convergence, furthermore, is not required to estimate the MAP configuration
on any tree sub-structure of the model, which can be obtained in the final iteration by ignoring a given set
of dependencies.

Our speech separation model with grammar dynamics (and the speaker features xa and xb integrated out),
has the form:
p y1:T ; s
a
1:T ; s

b
1:T ; v

a
1:T ; v

b
1:T

� �
¼ p va

1

� �
p vb

1

� �YT

t¼2

p va
t jva

t�1

� �
p vb

t jvb
t�1

� �YT

t¼1

p sa
t jva

t

� �
p sb

t jvb
t

� �
p ytjsa

t ; s
b
t

� �
; ð22Þ
and so the factors fCðxCÞ are the conditional probabilities pðva
t jva

t�1Þ, pðsa
t jva

t Þ, pðytjsa
t ; s

b
t Þ, and so on.

For the grammar dynamics model, a natural message passing schedule is to alternate between passing mes-
sages from one grammar chain to the other, and passing messages along the entire grammar chain of each
source (Rennie et al., 2009). This is depicted graphically in Fig. 7. Initially all messages in the graph are ini-
tialized to be uniform, and va

1 and vb
1 are initialized to their priors.
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Fig. 7. Message passing sequences (m1 . . . m10) on the grammar dynamics model graph. We integrate out xa and xb when computing the
messages between sa and sb. The messages shown in a chain, such as m4, are passed sequentially along the entire chain, in the direction of
the arrows, before moving to the next message. Messages m6 through m10 are the same as m1 through m5, but with a and b swapped. Note
that m2 and m7 are the only messages that involve more than one source model. (a) Phases 1 and 2; (b) phases 3 and 4.

J.R. Hershey et al. / Computer Speech and Language xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
There are four phases of inference:

(1) Pass messages from the grammar states of source b to the grammar states of source a through the inter-
action function, pðytjsa

t ; s
b
t Þ, for all t (messages m1 to m3):
Plea
Spee
m1ðsb
t Þ , mvb

t!sb
t
¼ max

vb
t

pðsb
t jvb

t Þmvb
t�1
!vb

t
mvb

tþ1
!vb

t

m2ðsa
t Þ , msb

t!sa
t
¼ max

sb
t

pðytjsa
t ; s

b
t Þmvb

t!sb
t

m3ðva
t Þ , msa

t!va
t
¼ max

sa
t

pðsa
t jva

t Þmsb
t!sa

t

(2) Pass messages forward and then backward along the grammar chain for source a, for t=1..T (message
m4), and then backward, for t=T..1 (message m5):
m4ðva
t Þ , mva

t�1
!va

t
¼ max

va
t�1

pðva
t jva

t�1Þmva
t�2
!va

t�1
msa

t�1
!va

t�1

m5ðva
t Þ , mva

tþ1
!va

t
¼ max

va
tþ1

pðva
tþ1jva

t Þmva
tþ2
!va

tþ1
msa

tþ1
!va

tþ1
(3) Pass messages from the grammar states of speaker a to the grammar states of speaker b, again via their
data interaction (messages m6 to m8).

(4) Pass messages forward and backward along the grammar chain for source b, for t=1..T (message m9),
and then backward, for t=T..1 (message m10):

5.2. Max-sum-product algorithm

A variation of the described max-product algorithm is to replace the max operators in the updates for the
messages that are sent between the sources with sums (messages m1, m2, m3, m6, m7, and m8). We call the
resulting algorithm the max-sum-product algorithm. This variation of the algorithm produced substantially
better results on the challenge task.
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5.3. Dual dynamics

In the dual-dynamics condition we use the full model of Fig. 6. With two speakers, exact inference is com-
putationally complex because the full joint distribution of the grammar and acoustic states,
ðva � saÞ � ðvb � sbÞ, is required.

Instead we can perform a variety of approximate inference algorithms using belief propagation as described
above. One formulation we tried involved alternating the 2-D Viterbi search between two factors: the Carte-
sian product sa � sb of the acoustic state sequences and the Cartesian product va � vb of the grammar state
sequences. Again, in the same-talker condition, the 2-D Viterbi search breaks the symmetry in each factor.
A variation of this involves iterating 2-D forward–backward iterations on the two chains, followed by Viterbi
steps. In addition, we experimented with the max-product algorithm on the graph of Fig. 4. None of these
variations outperformed the 2-D Viterbi algorithm on the grammar dynamics model. However we did not
exhaustively search the space of these models and we still see this as a useful direction to explore.

6. Acoustic likelihood estimation

Model-based speech separation would be impractical without special techniques to reduce computation
time. The exact 2-D Viterbi inference requires a large number of state combinations to be evaluated. To speed
up the evaluation of the joint state likelihood, in addition to sharing the same acoustic Gaussians across all
grammar states, we also employed both band quantization of the acoustic Gaussians and joint-state pruning.
These optimizations are needed because the interaction function generally requires all combinations of acous-
tic states to be considered. The max interaction model is inherently faster than Algonquin and can also be
approximated to further reduce computational cost.

6.1. Band quantization

One source of computational savings stems from the fact that some of the Gaussians in our model may
differ only in a few features. Band quantization addresses this by approximating each of the Ds Gaussians
of each model with a shared set of d Gaussians, where d � D, in each of the F frequency bands of the feature
vector. A similar idea is described in Bocchieri (1993). For a diagonal covariance matrix,
pðxajsaÞ ¼

Q
f Nðxa

f ; lf ;sa ; r2
f ;saÞ, where r2

f ;sa are the diagonal elements of covariance matrix Rsa . The mapping
Mf ðsiÞ associates each of the Ds Gaussians with one of the d Gaussians in band f. Now
p̂ðxajsaÞ ¼

Q
f Nðxa

f ; lf ;Mf ðsaÞ; r
2
f ;Mf ðsaÞÞ is used as a surrogate for pðxajsaÞ. Fig. 8 illustrates the idea.

Under this model the d Gaussians are optimized by minimizing the KL-divergence
Dsð
P

sa pðsaÞpðxajsaÞjj
P

sa pðsaÞp̂ðxajsaÞÞ, and likewise for sb, using the variational approximation of Hershey
and Olsen (2007). Then in each frequency band, only d � d, instead of Ds � Ds combinations of Gaussians
have to be evaluated to compute pðyjsa; sbÞ. Despite the relatively small number of components d in each
band, taken across bands, band quantization is capable of expressing dF distinct patterns, in an F-dimen-
sional feature space. In practice only a subset of these will be used to approximate the Gaussians in a given
model. We used d ¼ 8 and Ds ¼ 256, which reduced the likelihood computation time by several of
magnitude.

6.2. Joint state pruning

Another source of computational savings comes from the sparseness of the model. Only a handful of sa; sb

combinations have likelihoods that are significantly larger than the rest for a given observation. Only these
states are required to adequately explain the observation. By pruning the total number of combinations down
to a smaller number we can speed up the temporal inference.

We must estimate all likelihoods in order to determine which states to retain. We therefore used band quan-
tization to estimate likelihoods for all states, perform state pruning, and then evaluate the full likelihood
model on the pruned states using the exact parameters. In the experiments reported here, we pruned down
to 256 state combinations.
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Fig. 8. In band quantization, a large set of multi-dimensional Gaussians is represented using a small set of shared unidimensional
Gaussians optimized to best fit the original set of Gaussians. Here we illustrate twelve two-dimensional Gaussians (green ellipses). In each
dimension we quantize these to a pool of four shared unidimensional Gaussians (red density plots on axes). The means of these are drawn
as a grid (blue dashed lines), on which the quantized two-dimensional Gaussians (red dashed ellipses) can occur only at the intersections.
Each quantized two-dimensional Gaussian is constructed from the corresponding pair of unidimensional Gaussians, one for each
feature dimension. In this example we represent 24 means and variances (12 Gaussians �2 dimensions), using 8 means and variances (4
Gaussians �2 dimensions). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article).
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6.3. Marginal likelihoods

The max-sum-product loopy belief propagation algorithm presented in this paper requires that the follow-
ing messages be iteratively computed:
Plea
Spee
m2ðsa
t Þ ¼

X
sb

t

pðytjsa
t ; s

b
t Þm1ðsb

t Þ; and m7ðsb
t Þ ¼

X
sa

t

pðytjsa
t ; s

b
t Þm6ðsa

t Þ;
These updates couple inference over the speakers, and require OðD2
s Þ operations per message, because all

acoustic state combinations must be considered. This is the case for both Algonquin and the max model. Un-
der the max model, however, the data likelihood in a single frequency band (10) consists of N terms, each of
which factor over the acoustic states of the sources. Currently we are investigating linear-time algorithms
(O(NDs)) that exploit this property to approximate pðys

kÞ.

6.4. Max model approximation

For many pairs of states one model is significantly louder than another lsa
t
� lsb

t
in a given frequency band,

relative to their variances. In such cases we can closely approximate the max model likelihood as
pðytjsa

t ; s
b
t Þ � pxa

t
ðytjsa

t Þ, and the posterior expected values according to Eðxa
t jyt; s

a
t ; s

b
t Þ � yt and

Eðxb
t jyt; s

a
t ; s

b
t Þ � minðyt; lsb

t
Þ, and similarly for lsa

t
� lsb

t
. In our experiments this approximation made no sig-

nificant difference, and resulted in significantly faster code by avoiding the Gaussian cumulative distribution
function. It is therefore used throughout this paper in place of the exact max algorithm.

7. Speaker and gain estimation

The identities of the two speakers comprising each multi-talker test utterance are unknown at test time, and
therefore must be estimated when utilizing speaker-dependent acoustic models.

The SNR of the target speaker relative to the masker varies from 6 dB to �9 dB in the test utterances. We
trained our separation models on gain-normalized speech features, so that more representative acoustic mod-
els could be learned using diagonal-covariance GMMs, and so the absolute gains of each speaker also need to
be inferred.
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The number of speakers and range of SNRs in the multi-talker test set makes it expensive to directly con-
sider every possible combination of models and gains. If the speaker gains are each quantized to 3 bits, and we
use 34, 256-component speaker-dependent acoustic models to represent the speakers, for example, there are
ð34 � 8Þ2 > 216 possible speaker/gain configurations to search over, each with 2562 ¼ 216 acoustic states that
need to be evaluated at each time step.

We avoid this computation by doing a model-based analysis of each test utterance, that assumes that only
one speaker emits each observed signal frame. Under the model, frames that are dominated by a single talker,
and have distinguishing features, will have sharp speaker posteriors. These frames are identified and used to
narrow down what speakers are present in the mixture. We then explore the greatly reduced set of plausible
speaker combinations with an approximate EM procedure, to select a single pair of speakers, and optimize
their gains.

We model the observed features at frame t as generated by a single speaker c, and assume that log spectrum
of the speaker is described by a mixture model:
Plea
Spee
pðyt; cÞ ¼ pðcÞ
X

g

pðgÞ
X

sc

pðscjcÞpðytjsc; gÞ ð23Þ
where the speaker gain g is modeled as discrete and assumed to be uniformly distributed over
G ¼ f6; 3; 0;�3;�6;�9;�12g, and pðytjsc; gÞ ¼ N ðyt; lsc þ g;RscÞ, where lsc and Rsc are the gain-normalized
mean and variance of component sc of speaker c. The speaker prior pðcÞ ¼ pc is initialized to be uniform.

To estimate the posterior distribution of each source in the mixture, we apply the following simple EM
algorithm. In the E-Step, we compute the posterior distribution of each source for each frame, given the cur-
rent parameters of the model:
pðcjytÞ ¼
pðyt; cÞP

cpðyt; cÞ
ð24Þ
In the M-Step, we update the parameters of the source prior, fpcgc, given fpðcjytÞgt. To make the procedure
robust in multi-talker data, only frames t�T , where the uncertainty in the generating speaker is low are con-
sidered in the parameter update:
pc ¼ ET ½pðcjytÞ� ¼
1

jT j
X
t�T

pðcjytÞ; ð25Þ
where T ¼ ft : maxcpðcjytÞ > ag, and a is a chosen threshold. In this manner frames with features that are
common to multiple sources (such as silence), and frames that are comprised of multiple sources, and therefore
not well explained by any single speech feature, are not included in the speaker parameter updates.

The updates may be iterated until convergence, but we have found that a single EM iteration suffices. The
posterior distribution of the speakers given the entire test utterance is taken as fpcg, which is the expected
value of the posterior distribution of the speakers, taken over frames that are dominated by a single source
and have distinguishing features.

Fig. 9 depicts the original spectrograms of the target and masker signals and the speaker posteriors pðcjytÞ
plotted as a function of t, for a typical test mixture in the challenge two-talker corpus. The speaker posteriors
are sharply peaked in regions of the mixture where one source dominates.

Given a set of speaker finalists chosen according to fpcg, we apply the following approximate EM algo-
rithm, to each speaker combination fa; bg, to identify what speakers are present in the mixture and adapt their
gains. We use the approximate max model (see Section 6.4) to compute likelihoods for this algorithm,
although similar can be derived for the other interaction models. The speaker combination whose gain-
adapted model combination maximizes the probability of the test utterance is selected for utilization by the
separation system.

(1) E-Step: Compute the state posteriors piðsa
t ; s

b
t jytÞ for all t given the current speaker gain estimates gi�1

a

and gi�1
b , where i is the iteration index, using the max approximation (see Section 4),

(2) M-Step: Update the gain estimates given the computed state posteriors. The update for gi
a is
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Fig. 9. Plots of the (unobserved) spectrograms of the target and masker speakers and the speaker posteriors pðcjytÞ under the single source
emission model, for a typical test utterance in the two-talker corpus (mixed at 0 dB).
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Plea
Spee
gi
a ¼ gi�1

a þ aiDgi
a ð26Þ

Dgi
a ¼

P
t

P
sa

t ;s
b
t
piðsa

t ; s
b
t jytÞ

P
f2F

sa
t >sb

t

Dgi
f ;sa

t
r2

f ;sa
tP

t

P
sa

t ;s
b
t
piðsa

t ; sb
t jytÞ

P
f2F

sa
t >sb

t

1
r2

f ;sa
t

ð27Þ
where Dgi
f ;sa

t
¼ ðyf ;t � lf ;sa

t
� gi�1

a Þ, F sa
t >sb

t
is the set of frequency bins where lsa

t
þ gi�1

a > lsb
t
þ gi�1

b (where the
gain-adapted feature of source a is greater than that of source b), and ai is the adaptation rate.Here lf ;sa

t

and r2
f ;sa

t
represent the mean and variance of component s of speaker model a at frequency bin f, respectively.

The gi
b update is analogous.

Note that the probability of the data is not guaranteed to increase at each iteration of this EM procedure,
even when ai ¼ 1, because in the approximate max model, the joint state posterior piðsa

t ; s
b
t jytÞ is not contin-

uous in gi
a and gi

b, and so the dimension assignment F sa
t >sb

t
changes depending on the current gain estimate.

Empirically however, this approach has proved to be effective.
Table 2 reports the speaker identification accuracy obtained on the two-talker test set via this approach,

when all combinations of the most probable source and the six most probable sources are considered (six com-
binations total), and the speaker combination maximizing the probability of the data is selected. Over all mix-
ture cases and conditions on the two-talker test set we obtained greater than 98% speaker identification
accuracy overall.
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Table 2
Speaker identification accuracy (percent) as a function of test condition and case on the two-talker test set, for the presented source
identification and gain estimation algorithm.

Condition 6 dB 3 dB 0 dB �3 dB �6 dB �9 dB All

Same talker 100 100 100 100 100 99 99.8
Same gender 97 98 98 97 97 96 97.1
Different gender 99 99 98 98 97 96 97.6

All 98.4 99.1 99.0 98.2 98.1 96.5 98.2

Table 3
Word error rates (percent) on the stationary noise development set. The error rate for the ‘‘random-guess” system is 87%. The systems in
the table are: (1) The default HTK recognizer, (2) IBM–GDL MAP–adapted to the speech separation training data, (3) MAP–adapted to
the speech separation training data and artificially generated training data with added noise, (4) Oracle MAP adapted speaker-dependent
system with known speaker IDs at test time, (5) MAP adapted speaker-dependent models with SDL, and (6) human listeners.

System Noise condition

Clean 6 dB 0 dB �6 dB �12 dB

HTK 1.0 45.7 82.0 88.6 87.2
GDL–MAP I 2.0 33.2 68.6 85.4 87.3
GDL–MAP II 2.7 7.6 14.8 49.6 77.2
Oracle 1.1 4.2 8.4 39.1 76.4

SDL 1.4 3.4 7.7 38.4 77.3
Human 0.6 1.7 5.0 30.7 62.5
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8. Recognition using speaker-dependent labeling (SDL)

When separating the mixed speech of two speakers, we start with an estimated speaker ID and gain com-
bination, say speaker a and speaker b. However, we do not yet know which speaker is saying white. So, in the
models with grammars we separate under two hypotheses: H1, in which speaker a says ‘‘white” and speaker b

does not, and H2, in which speaker b says ‘‘white” and speaker a does not. We use a grammar containing only
‘‘white” for speakers hypothesized to say ‘‘white”, and one that contains the other three colors for speakers
hypothesized not to say ‘‘white”. Likewise, we perform SDL recognition on each pair of outputs under the
same hypothesis that generated it, using the same grammar for each sequence. The system then picks the
hypothesis that yielded the highest combined likelihood for the target and masker pair.

Our speech recognition system uses speaker-dependent labeling (SDL) (Rennie et al., 2006) to do rapid
speaker adaptation. This method uses speaker-dependent models for each of the 34 speakers. Instead of using
the speaker identities provided by the speaker ID and gain module, we followed the approach for gender
dependent labeling (GDL) described in Olsen and Dharanipragada (2003). This technique provides better
results than if the true speaker ID is specified.

Incidentally, the grammar-based version of the separation system also provides a hypothesis of the utter-
ance text. Nevertheless, the SDL recognizer still produced better results from the reconstructed signals. This
may be because the recognizer uses better features for recognizing clean speech. Another explanation might
be that the separation system may make mistakes in estimating the words, but as long as it correctly esti-
mates the times and frequencies where one signal dominates the other, the original signal will be recon-
structed correctly.

We employed MAP training Gauvain and Lee, 1994 to train a speaker-dependent model for each of the 34
speakers. The speech separation challenge also contains a stationary colored noise condition, which we used to
test the noise-robustness of our recognition system. The performance obtained using MAP adapted speaker-
dependent models with the baseline gender dependent labeling system (GDL) and SDL are shown in Table 3.
The SDL technique (described below) achieves better results than the MAP adapted system using oracle
knowledge of the speaker ID.
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8.1. Theory of SDL

Instead of using the speaker identities provided by the speaker ID and gain module directly in the recog-
nizer, we followed the approach for gender dependent labeling (GDL) described in Olsen and Dharanipragada
(2003).

Each speaker c is associated with a set, Sc, of 39 dimensional cepstrum domain acoustic Gaussian mixture
models. At a particular time frame then we have the following estimate of the a posteriori speaker probability
given the speech feature xt:
Plea
Spee
pðcjxtÞ ¼
P

s2Sc
psN ðxt; ls;RsÞP

c0
P

s2Sc0
psN ðxt; ls;RsÞ

:

SDL does not make the assumption that each file contains only one speaker, but instead assumes only that the
speaker identity is constant for a short time, and that the observations are unreliable. The speaker probability
is thus averaged over a time window using the following recursive formula:
pðcjx1:tÞ ¼
def

apðcjx1:t�1Þ þ ð1� aÞpðcjxtÞ ð28Þ

for speaker c at time t, and where a is a time constant. This is equivalent to smoothing the frame-based speaker
posteriors using the following exponentially decaying time window.
pðcjx1:tÞ ¼
Xt

t0¼1

ð1� aÞat�t0pðcjxt0 Þ; ð29Þ
The effective window size for the speaker probabilities is given by a=ð1� aÞ, and can be set to match the typ-
ical duration of each speaker. We chose a=ð1� aÞ ¼ 100, corresponding to a speaker duration of 1.5 s.

The online a posteriori speaker probabilities are close to uniform even when the correct speaker is the one
with the highest probability. We can remedy this problem by sharpening the probabilities. The boosted
speaker detection probabilities are defined as
pcðtÞ ¼ p cjx1:tð Þb
.X

c0
p c0jx1:tð Þb: ð30Þ
We used b ¼ 6 for our experiments. During recognition we can now use the boosted speaker detection prob-
abilities to give a time-dependent Gaussian mixture distribution:
GMMðxtÞ ¼
X

c

pcðtÞGMMcðxtÞ:
As can be seen in Table 3, despite having to infer the speaker IDs, the SDL system outperforms the oracle
system, which knows the speaker ID at test time.

9. Experimental results

Human listener performance is compared in Fig. 10 to results using the SDL recognizer without speech sep-
aration, and for each of the proposed models. Performance is poor in all conditions when separation is not
used. With separation, but no dynamics, the models do surprisingly well in the different talker conditions,
but poorly when the signals come from the same talker. Acoustic dynamics give some improvement, mainly
in the same talker condition. The grammar dynamics model seems to give the most benefit, bringing the over-
all error rate below that of humans. The dual-dynamics model performed about the same as the grammar
dynamics model. However, it remains to be seen if tuning the relative weight of the grammar versus acoustic
dynamics improves results in the dual-dynamics model.

Fig. 11 shows the relative word error rate of the best system compared to human subjects. For SNRs in
the range of 3 dB to �6 dB, the system exceeds human performance. In the same-gender condition when the
speakers are within 3 dB of each other the system makes less than half the errors of the humans. Human
listeners do better when the two signals are at different levels, even if the target is below the masker
se cite this article in press as: Hershey, J.R. et al., Super-human multi-talker speech recognition: ..., Computer
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Fig. 10. Average word error rate (WER) as a function of model dynamics, in different talker conditions, compared to Human error rates,
using Algonquin.
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Fig. 11. Word error rate of best system relative to human performance. That is, a relative WER of �50% corresponds to half as many
errors as humans, a relative WER of 0% is human performance, and a relative WER of 100% indicates twice as many errors as humans.
Shaded area is where the system outperforms human listeners.

Table 4
Error rates for the Algonquin algorithm with grammar dynamics. Cases where the system performs as well as, or better than, humans are
emphasized.

Condition 6 dB 3 dB 0 dB �3 dB �6 dB �9 dB Total

Same talker 30 35 46 38 38 48 39.3
Same gender 8 8 9 11 14 22 11.9

Different gender 6 7 8 10 12 20 10.7

Overall 15.4 17.8 22.7 20.8 22.1 30.9 21.6
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(i.e., in �9 dB), suggesting that they are better able to make use of differences in amplitude as a cue for
separation.

Table 4 shows the results of one of the best overall systems, which uses the Algonquin model and grammar
dynamics. In the above experiments, the clean condition was not considered in the overall result, as it was not
a requirement in the challenge.
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Table 5
Comparison of system with clean detection against baseline without clean detection for clean conditions and two-talker conditions
(averaged across all SNRs).

System Condition

Clean Two-talker

Baseline 26.6 21.6
Clean detection 9.6 21.6
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9.1. Handling clean conditions

In clean conditions, the original system performs poorly, at an error rate of 26.6%, because the gain esti-
mation system assumes there are two speakers. To show that we can handle the clean situation even with poor
gain estimates, we introduce a maximum-likelihood clean detection method, as follows: In addition to the
hypotheses, H1 and H2, about which estimated speaker is the target, we add a third hypothesis, H3, that there
is only one speaker. Under this hypothesis we recognize the mixed speech directly using the SDL recognizer,
measuring its likelihood. We then compared this likelihood with the averaged likelihoods of the best pair of
enhanced signals. The final decoded result is then the one with the best overall likelihood. Results using clean
detection in Table 5 show that it improves performance in clean conditions without hurting performance in
two-talker conditions.

9.2. Speaker independent background models

In the experiments reported above we take full advantage of the closed speaker set. In most scenarios it is
unrealistic to assume any knowledge of the set of background speakers. However, there are some scenarios
where the target speaker may be entirely known. This motivates an experiment in which we use a speaker-
dependent target model, and a speaker independent background model. Here we consider two cases of back-
ground model: one that is entirely speaker independent, and another that is gender dependent. To remove the
influence of the speaker ID and gain estimation algorithm, here we compare results using the oracle speaker
IDs and gains for the target and masker. In both cases all the background models 256 acoustic states each.
Table 6 gives the results. As expected, decreasing the specificity of the background model increases error rates
in every condition. However, the more general background models are using fewer states relative to the num-
ber of speakers being represented, so this may also be a significant factor in the degradation.

9.3. Background grammar

Another interesting question is how important the grammar constraints are. Above, we tested systems with
different levels of constraints on dynamics, and those without a grammar fared poorly for this highly con-
strained task, relative to those with the task grammar. In realistic speech recognition scenarios, however, gen-
erally little is known about the background speaker’s grammar. To relax the grammar constraints we used a
‘‘bag of words” for the masker grammar, which consisted of an unordered collection of all words in the gram-
mar (including ‘‘white”). Using the grammar-dynamics model and oracle speaker IDs and gains, the overall
error rate was 23.2%, compared with 19.0% for the grammar used in the main experiment. It would be inter-
esting to further relax the masker dynamics to a phoneme bi-gram model or even just acoustic-level dynamics,
for instance.

9.4. Known transcripts

At the opposite extreme, an interesting question is to what extent tighter grammar constraints might affect
the results. In some scenarios the actual transcript is known. For example, this is the case with a closed-cap-
tioned movie soundtrack, a song with background music, or a transcribed meeting. Even though the transcrip-
tion is known it might be useful to extract the original voices from the mixture in an intelligible way for human
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Table 6
Comparison of results of the Algonquin method, for known target speaker, with grammar dynamics for three background model types:
speaker-dependent (SD) with known masker, gender dependent (GD) with known masker gender, and speaker independent (SI). Oracle
gains were used in all cases.

Condition SD GD SI

Same talker 33.3 41.5 57.5
Same gender 11.5 12.8 21.6
Different gender 9.9 11.9 15.6
Overall 19.0 23.1 32.8

Table 7
WER as a function of separation algorithm and test condition. In all cases oracle speaker IDs and gains were used, and Algonquin was
used to approximate the acoustic likelihoods unless otherwise noted. The joint Viterbi algorithm scales exponentially with the number of
sources. The iterative loopy belief propagation algorithms, on the other hand, scale linearly with language model. Results exceeding
human performance are emphasized.

Inference Joint Max Iterative Iterative

Algorithm Human Viterbi Product Viterbi Max-sum product

Likelihoods ? Algonquin Algonquin Algonquin Algonquin Max

ST 34.0 33.3 42.0 44.3 39.7 38.6
SG 19.5 11.5 12.9 16.4 12.0 14.4

DG 11.9 9.9 12.0 13.9 11.1 10.8

Overall 22.3 19.0 23.3 25.8 21.9 22.1
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listening. To test this scenario, we limited the grammars in the separation model to just the reference tran-
scripts for each speaker. To measure intelligibility, we measured recognition on the separated target signal
using the SDL recognizer with the full task grammar. The error rate on the estimated sources dropped from
19.0% down to 7.6% overall. This is consistent with an improvement to human intelligibility, and informal
listening tests confirmed that the source signals were typically extracted remarkably well, and in a way that
preserved the identity and prosody of the original speaker.

9.5. Iterative source estimation

To see how well we can do with a separation algorithm that scales well to larger problems – with more
speakers, a larger vocabulary, and so on – we experimented with the use of loopy belief propagation to avoid
searching over the joint grammar state–space of the speaker models.

Table 7 summarizes the WER performance of the system as a function of separation algorithm. For all iter-
ative algorithms, the message passing schedule described in Section 5 was executed for 10 iterations to estimate
the most likely configuration of the grammar states of both sources. After inferring the grammar state
sequences, MMSE estimates of the sources were then reconstructed by averaging over all active acoustic
states. In all cases, oracle speaker IDs and gains were used.

The iterative Viterbi algorithm is equivalent to the iterative max-sum product algorithm, but with the mes-
sages from the grammar to the acoustic states of each source bottlenecked to the single maximum value.

The proposed iterative message-passing algorithms perform comparably to the joint Viterbi algorithm,
which does exact temporal inference. Interestingly, the results obtained using the iterative max-sum product
algorithm are significantly better than those of the max-product algorithm, presumably because this leads to
more accurate grammar state likelihoods.

Temporal inference using the max-sum product algorithm is significantly faster than the exact temporal
inference, and still exceeds the average performance of human listeners on the task. These iterative algorithms,
moreover, scale linearly with language model size. Table 8 summarizes the WER performance and relative
number of operations required to execute each algorithm as a function of grammar beam size and acoustic
Please cite this article in press as: Hershey, J.R. et al., Super-human multi-talker speech recognition: ..., Computer
Speech and Language (2009), doi:10.1016/j.csl.2008.11.001



Table 8
WER and relative number of operations as a function of algorithm, likelihood model, and beam size.

Inference Joint Joint Iterative
Algorithm Viterbi Viterbi Max-sum product

Likelihoods Algonquin Algonquin Algonquin Max

Beam size 20000 400 Full Full
Task error rate 19.0 22.1 21.9 22.1
Temporal inference (relative operations) 10X 3X 1X 1X

J.R. Hershey et al. / Computer Speech and Language xxx (2009) xxx–xxx 21

ARTICLE IN PRESS
interaction model. Here temporal inference refers to all computation explicitly associated with the source
grammars (including the acoustic likelihood to grammar mapping). Even for two sources, temporal inference
with loopy belief propagation is three times more efficient than joint Viterbi with a beam of 400, which yields
comparable WER performance.

10. Conclusion

We have described a system for separating and recognizing speech that outperforms human listeners on the
monaural speech separation and recognition challenge. The computation required for exact inference in the
best system is exponentially complex in the number of sources and the size of the models. However, we have
shown that using approximate inference techniques, we can perform nearly the same temporal inference with
complexity that is linear in number of sources and the size of the language models. The approach can therefore
be readily scaled to more complex problems. Of course, many problems must be solved in order to make
model-based speech separation viable for real-world applications. There is room for improvement in the mod-
els themselves, including separation of excitation and filter dynamics, adaptation to unknown speakers and
environments, better modeling of signal covariances, and incorporating phase constraints. An other important
extension is to use microphone arrays to help improve the separation wherever possible. Perhaps the most
important direction of future research is to further reduce the computational cost of inference, especially in
the evaluation of the acoustic likelihoods. We are currently investigating algorithms for computing the mar-
ginal acoustic likelihoods, which, in combination with the loopy belief propagation methods introduced here,
would make the complexity of the entire system linear in the number of speakers and states.
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