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C h a p te r  1

INTRODUCTION AND REVIEW

1.1 Statement of the problem.

The o b je c t  o f - t h i s  th e s i s  i s  to  e lu c id a te  the means by 

which h a i r  c e l l s  in the  cochlea are s t im ula ted  to  i n i t i a t e  

a c t i v i t y  of the  f i b e r s  In  the aud i to ry  nerve.  This issue  is  

c e n t r a l  t o  understanding the performance of the aud i to ry  

per iphery .  The h a i r  c e l l s  in the cochlea are  the 

t ransducers  of mechanical v ib ra t io n  i n t o  synap t ic  a c t i v i t y  

t h a t  genera tes  ac t io n  p o t e n t i a l s  in the au d i to ry  nerve. 

They are  a t tached  to  the  b a s i l a r  membrane and move with i t .  

The r e l a t i o n  between b a s i l a r  membrane movement and h a i r  c e l l  

e x c i t a t io n  has been s tud ied  e x te n s iv e ly .  S t i l l  th e re  i s  

disagreement on one of the bas ic  issues*  whether the 

s t imulus t o  a h a i r  c e l l  in  the cochlea i s  the d isplacement,  

the v e l o c i t y ,  the a c c e le r a t io n  of the b a s i l a r  membrane, or 

some combination of these  and perhaps o the r  v a r i a b le s .

Many obse rva t ions  have puzzled aud i to ry  . p h y s io lo g is t s  

fo r  decades. Some of these  are  descr ibed  below. As sound 

s t im u la te s  the  e a r ,  s u b s t a n t i a l  e l e c t r i c  a c t i v i t y  i s  

e l i c i t e d  in th e  cochlea .  The ro le  of these  s t im u lu s - re la te d  

cochlear  p o t e n t i a l s  in the e x c i t a t io n  process  i s  unc lea r .  

The h a i r  c e l l s  produce most of these  p o t e n t i a l s ,  but i t  i s  

not known whether these  p o t e n t i a l s  p lay  an a c t iv e  p a r t  in
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the mechanisms leading to  aud i to ry  nerve f i b e r  a c t i v i t y  or 

i f  they are only a r e f l e c t i o n  of the a c t i v i t y  of the c e l l s  

as they are  mechanically  s t im u la ted  by the f l u id s  and 

s t r u c t u r e s  in the cochlea .

The problem of the r e l a t i o n  between BM movement and 

h a i r  c e l l  e x c i t a t io n  has not been f u l l y  reso lved ,  because of 

the d i f f i c u l t i e s  in measuring events tak ing  p lace a t  the 

h a i r  c e l l  l e v e l .  To i n f e r  the funct ion  of h a i r  c e l l s ,  

in v e s t ig a to r s  have th e re fo re  s tud ied  the responses of 

aud i to ry  nerve f i b e r s ,  which rep re sen t  the output from the 

cochlea ,  in o th e r  words, the  cochlea i s  t r e a t e d  as a "black
i

box". The. r e l a t i o n s h i p  between sound s t im u l i  and nerve 

f i b e r  a c t i v i t y  i s  a complex one,  th e r e f o r e ,  simple models do 

not r e f l e c t  very well many of the phys io log ica l  phenomena 

observed. Only r e c e n t ly  has the  technology advanced to  the 

p o in t  th a t  i t  i s  p o ss ib le  to  record i n t r a c e l l u l a r  p o t e n t i a l s  

from h a i r  c e l l s .

Inner  and ou te r  h a i r  c e l l s  most l i k e l y  have d i f f e r e n t  

fu n c t io n s ,  s ince  they have d i f f e r i n g  morphology and 

e l e c t r i c a l  p r o p e r t i e s .  How they d iv ide  t h e i r  ta sk  of 

d e te c t in g  and analyzing sound s ig n a ls  i s  l a rg e ly  unknown.

Inner h a i r  c e l l s  a re  innervated  by over 90% of the 

a f f e r e n t  aud i to ry  f i b e r s  (Spoendlin 1972), ba t  ou te r  h a i r  

c e l l s  play an important r o l e  in  th e  e x c i t a t i o n  process  as 

well (Oallos e t  a l .  1972a). How the ou te r  h a i r  c e l l s  r e la y  

t h e i r  Influence to  the nerve i s  unknown. Each aud i to ry
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nerve f i b e r  responds s e l e c t iv e l y  to  sounds of a s p e c i f i c  

frequency. Important processing  of the sound s igna l  must 

th e re fo re  take place in the cochlea .  Measurements of the 

b a s i l a r  membrane movement show t h a t  t h i s  s t r u c tu r e  v ib r a te s  

maximally a t  a c e r t a in  place for  a c e r t a in  frequency, but 

t h i s  measured tuning may be le s s  than the  sharpness of 

tuning of the nerve f i b e r s .  Measurements of the p o t e n t i a l s  

in s ide  inner  h a i r  c e l l s  (Russel and S e l l i c k ,  1977) in d ica te  

t h a t  the sharp tuning  a l ready  e x i s t s  a t  t h a t  l e v e l .  Some 

s o r t  of a. "second f i l t e r 4' ,  has th e re fo re  been po s tu la te d  to 

e x i s t  (Evans J972), located  somewhere between the b a s i l a r  

membrane and the  inner  h a i r  c e l l s ,  but recen t  accurate  

measurements of the BM movement in d ic a te  th a t  i t  may be as 

sharply  tuned as the au d i to ry  f i b e r s  (Khanna and Leonard, 

1981). A neural  network in s id e  the cochlea has been looked 

f o r ,  t o  exp la in  the  sharp tuning of aud i to ry  f i b e r s ,  but no 

s t r u c t u r a l  evidence of such a network has been found.

The in t e r a c t i o n  between h a i r  c e l l s ,  i f  i t  e x i s t s ,  has 

been assumed to  be e l e c t r i c a l ,  mechanical or both .  Models 

of t h i s  in t e r a c t i o n  have been put forward by many 

in v e s t ig a to r s  (Oulfhuis 1976, Manley .1978, Tonndorf 1.974, 

e t c . ) ,  s p e c i f i c a l l y  to  explain  sharpening.  I t  has not been 

poss ib le  to  d i r e c t l y  t e s t  the v a l i d i t y  of the se  th e o r i e s .  

Tuning of the  nerve f i b e r s  i s  not the primary concern in 

t h i s  s tudy ,  but i t  i s  an Inheren t  p roper ty  of s in g le  f i b e r  

response and th e re fo re  of i n t e r e s t .
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Many f a c t s  in d ic a te  th a t  the  mentioned in te r a c t i o n  

between h a i r  c e l l  popula t ions  e x i s t s  ( e .g .  Zwislocki 1977, 

Manley 1977, 1978). Such an in t e r a c t i o n  could explain  why 

the experiments to  be reviewed in t h i s  chap te r  have not 

given c l e a r - c u t  answers to  the  ques t ion  of the  r e l a t i o n  

between BM movement and nerve f i b e r  a c t iv i ty *  In te ra c t io n  

between h a i r  c e l l s  would increase  the  complexity of the 

BM-to-nerve response r e l a t i o n .

One in d ic a t io n  of in t e r a c t i o n  between h a i r  c e l l  

popula t ions worth mentioning before a de ta i led ,  d e s c r ip t io n  

of .available  da ta  i s  given i s  the  following* As mentioned, 

over 90%. of the aud i to ry  nerve f i b e r s  innerva te  inner  h a i r  

c e l l s .  These c e l l s  are  thought to  have t h e i r  c i l i a  f r e e ly  

moving in  the f l u i d  above the r e t i c u l a r  lamina ( e .g .  Kimura 

1966), thus responding to  v e lo c i ty  r a th e r  than displacement 

of the b a s i l a r  membrane (Dallos e t  a l .  1972a). Experiments 

Ind ica te  th a t  nerve f i b e r s  can show a c t i v i t y  during 

sus ta ined  displacement of the b a s i l a r  membrane, towards one 

of the s c a l a e ,.. tympanl or v e s t i b u l l .  . .This observation  could 

be explained with i n t e r a c t i o n  between inner and ou te r  h a i r  

c e l l s ,  s ince the QHCs have t h e i r  c i l i a  a t tached  to  the 

t e c t o r i a l  membrane and th e re fo re  should respond to 

displacement of the b a s i l a r  membrane. How the IHCs and OHCs 

would communicate in such a scheme i s  open to  sp ecu la t ion .

Another f a c to r  th a t  confounds the  r e l a t i o n s h i p  between 

BM movement and aud i to ry  nerve f i b e r  a c t i v i t y  i s  the
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complexity of the  BM mechanics. B a s i la r  membrane movement 

was reported  non l inear  by Rhode in 1971, a t  l e a s t  for  

f requencies  near  the c h a r a c t e r i s t i c ,  or bes t  frequency. The 

h a i r  c e l l s  are known to  have non l inear  e x i t a t i o n  

c h a r a c t e r i s t i c s  (Flock 1971). These, and o the r  poss ib le  

n o n l i n e a r i t i e s  are r e f l e c t e d  in coch lear  p o t e n t i a l s  as well 

as in the responses of aud i to ry  nerve f i b e r s .  Treatment of 

the cochlear  physiology by mathematical models becomes 

d i f f i c u l t  due to  these  n o n l i n e a r i t i e s .

The p resen t  work was performed s p e c i f i c a l l y  to  b e t t e r  

understand the  r e l a t i o n s h i p  between the b a s i l a r  membrane 

movement leading to  h a i r  c e l l  e x c i t a t io n  and aud i to ry  f ib e r  

a c t i v i t y .  Many experiments in d ic a te  a causal  r e l a t io n s h ip  

between these  q u a n t i t i e s .  For example, b ia s in g  the b a s i l a r  

membrane in one d i r e c t i o n ,  i . e .  towards sca la  v e s t ib u l i  or 

sca la  tympani has been shown to  in f luence  the response of 

aud i to ry  f i b e r s .  In the  experiments descr ibed  in Chapter 3 

we Induce such b ia s in g  with low frequency s t im u l i .  A

. su s ta ined  response in e i t h e r  d i r e c t io n  of displacement w i l l  

in d ic a te  a s e n s i t i v i t y  of the  aud i to ry  f i b e r s  to

displacement ,  a response during t r a n s i t i o n  of the BM

movement from one sca la  to  the  o ther  w i l l  in d ica te  v e lo c i ty  

s e n s i t i v i t y .  The in f luence  of a b ia s ing  low frequency 

s t imulus on the response of the aud i to ry  f ib e r s  due t o  a 

tone a t  the c h a r a c t e r i s t i c  frequency i s  a l so  s tu d ie d .  Whole 

nerve ac t ion  p o te n t i a l s  (AP) recorded in the  v i c i n i t y  of the
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cochlea are  bel ieved  to  be a r e f l e c t i o n  of the synchronized 

a c t i v i t y  of many aud i to ry  f i b e r s .  The APs can th e re fo re  be 

used to  i n d i r e c t l y  assess  the  a c t i v i t y  of s in g le  audi tory  

nerve f i b e r s .  The APs are a l s o  s tud ied  and the r e s u l t s  

compared t o  the  r e s u l t s  of s in g le  f i b e r  s tu d ie s .

I t  i s  d i f f i c u l t  to  measure the .  displacement of the 

b a s i l a r  membrane d i r e c t l y .  The approach taken has th e re fo re  

been to  f ind  c o r r e l a t e s  of the  BM movement. Such a 

c o r r e l a t e  i s  the  cochlear  microphonic, which i s  used in the 

p resen t  study in s tead  of measuring the BM movement d i r e c t l y .  

The time of e x c i t a t io n  of the  aud i to ry  f i b e r s  i s  in fe r re d  

from the d e te c t io n  of ac t io n  p o te n t i a l s  on the  audi tory  

nerve. An a t tem pt i s  then made to  c o r r e l a t e  t h i s  time with 

the b a s i l a r  membrane movement.

In the remainder of . t h i s  chapter  a review of  published 

experimental d a t a ,  p e r t i n e n t  t o  the su b je c t ,  i s  p resen ted .  

Chapter 2 descr ibes ,  methods used in the experiments 

performed and repor ted  in  Chapter 3 .  Chapter 4 contains  a 

d iscuss ion  of the  experiments in view of p resen t  knowledge 

of cochlear  physiology.

1.2 Review of p resen t  knowledge.

A f a v o r i t e  way to  study coch lear  function  has been to 

consider  the  cochlea a “black box", in o the r  words, to  use
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sound s t im u l i  or e f f e r e n t  nerve f i b e r  s t im u la t io n  as input 

and record s in g le  f ib e r  a c t i v i t y  or o the r  p o t e n t i a l s  on the 

ou ts ide  of the cochlea as o u tp u t ,  without invasion of the 

cochlea i t s e l f . .  This approach has the  g rea t  advantage of an 

In t a c t  coch lea ,  thus  normal func t ion  can be assumed. The 

c h a r a c t e r i s t i c  responses of aud i to ry  nerve f i b e r s  to  tone 

s t im u l i  have been ex ten s iv e ly  s tud ied  t h i s  way. However, 

a l l  conclusions about the events tak ing  place in s ide  the 

cochlea can only be i n d i r e c t l y  in fe r re d  from such 

experiments.

The fac t  t h a t  the r e l a t i o n  between sound and f ib e r  

a c t i v i t y  i s  . s t i l l ,  not f u l l y  understood i s  due to  the 

complexity of th a t  fu n c t io n .  I t  has become c l e a r  th a t  

n o n l i n e a r i t i e s  a re  an inheren t  p a r t  of the system. 

Mathematical models In co rp o ra t in g  such n o n l i n e a r i t i e s  have 

been proposed (Hall  1.977, Kim e t  a l .  1980, e t c . ) ,  but the 

s i t e  of o r ig in  in the cochlea of these n o n l i n e a r i t i e s  i s  not 

known. Our experiments ,  l ik e  so many o th e r s ,  are  aimed a t  

understanding events  a t  the c e l l  lev e l  by recording cochlear  

p o t e n t i a l s  and aud i to ry  nerve a c t i v i t y .  Therefore ,  the 

conclusions a re  i n d i r e c t  and w i l l  s tand  o r  f a l l  when more is  

known about events  tak in g  p lace a t  the  h a i r  c e l l  l e v e l .

A. Monitoring b a s i l a r  membrane movement.

The experiments descr ibed  in Chapter 3 r e ly  on an
t

assessment o f  the  movement of the b a s i l a r  membrane to  low
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frequency tones .  This assessment was made with the a id  of 

the coch lear  microphonic. Here we descr ibe  the movement of 

the BM as measured by d i r e c t  methods, then show how i t  i s  

r e l a t e d  to  the  cochlear  microphonic.

A cross  sec t io n  of the cochlea i s  p resen ted  in  f ig u re  

I . I .  The cochlea i s  a co i led  duct  f i l l e d  with per i lynph .  

The coch lear  p a r t i t i o n ,  f i l l e d  with endolymph, d iv ides  t h i s  

duct i n to  two s c a la e ,  c a l l e d  v e s t i b u l i  and tympani. Within 

the p a r t i t i o n  one f inds  the organ of C o r t i ,  the sensory 

s t r u c t u r e  of the cochlea .  The whole p a r t i t i o n  moves as 

sound i s  p resen ted  to  the  ear? the  movement of the b a s i l a r  

membrane causes the h a i r  c e l l  c i l i a  to  be d isp laced  and t h i s  

displacement leads t o  au d i to ry  nerve a c t i v i t y ,  through 

var ious  in te rm ediary  even ts .  In order  to  c o r r e l a t e  aud i to ry  

nerve responses with b a s i l a r  membrane movement i t  i s  

necessary  to  monitor the  BM movement. To do so d i r e c t l y  i s  

a formidable task  in i t s e l f .  To measure the BM movement and 

concurren t ly  ob ta in  s in g le  au d i to ry  f i b e r  responses ,  as 

Evans and Wilson did in 19.75, p re se n ts  an even g r e a t e r  

cha l lenge .

The f i r s t  experimental observa t ion  of the b a s i l a r  

membrane movement was done by B^ke'sy in 1942 (.figure 1 .2) .  

He discovered t h a t  the motion has the  form of a t r a v e l l i n g  

wave and t h a t  i t  i s  frequency dependent? High f requencies  

e l i c i t  t r a v e l l i n g  waves t h a t  reach only the  i n i t i a l  segment 

of the coch lea r  p a r t i t i o n  and as frequency d ec rease s ,  a



Figure I . I  Cross s e c t io n  of the  second tu rn  o f  t h e  gu
inea p ig  coch lea  (from Smith, 1975).
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l a rg e r  p a r t  of the p a r t i t i o n  v i b r a t e s .  In order  to  render 

. t h i s  movement v i s i b l e  with h i s  s troboscopic  technique* 

Be'k^sy had to use. very high sound p ressu re  levels*  on the 

order  of 140 dB SPL ( r e .  20 m icropasca l) .  The t r a v e l l i n g  

wave had a maximum a t  one point* and t h i s  maximum moved 

towards the apex as frequency decreased .

The p rec i s e  lo ca t io n  on the  BM of the t r a v e l l i n g  wave 

peak as a function  of  frequency was measured i n d i r e c t l y  with 

the a id  of le s io n  techniques .  L u r ie ,  Davis and Hawkins 

(1944), exposed guinea pigs to  high in t e n s i ty  tones and 

observed th a t  th e  region of most damage to  the cochlea was 

dependent on the frequency of the tone .  Schuknecht (1960) 

made s im i la r  experiments on c a t s  and mapped the regions of 

l a rg e s t  damage as func t ion  of exposure frequency. These 

experiments in d ica ted  th a t  the  f requencies  are  evenly

d i s t r i b u t e d  along the length of the p a r t i t i o n  in a more or

i e s s  logari thmic fa sh io n .  Recently,  Bruns (1976) mapped the 

cochlea of the horseshoe ba t  with a novel technique.  

Instead of damaging the organ of C o r t i ,  he induced, the ou te r  

h a i r  c e l l  n u c le i  to  swell  by exposure t o  pure tones.

Johnstone and Boyle (1967) measured the  movement of the 

cochlear  p a r t i t i o n  with a Mossbauer probe a t tached  to  the 

b a s i l a r  membrane. They could thus determine the v e lo c i ty  of 

the BM and in f e r  from i t  the  d isp lacement .  Kohlloffe l  

(1972) used a l a s e r  beam to  measure the  movement of the 

membrane. Capacit ive  probes have a l so  been u t i l i z e d  to

determine the movement of the  p a r t i t i o n  (Wilson and
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Johnstone* 1972).

Rhode (1971) used the Mossbauer technique in accurate  

d i r e c t  measurements of b a s i l a r  membrane motion. He placed 

the probe a t  the membrane where the  bes t  frequency* or 

frequency of la rg e s t ,  d isp lacement ,  i s  7 to  8 kHz. For 

measurements of displacement w i t h . t h i s  method* a r e l a t i v e l y  

high frequency g ives  b e t t e r  r e s o lu t io n ,  s ince the measured 

q u an t i ty  i s  v e l o c i t y .  Rhode was able to  d e t e c t  a nonl inear  

movement of the  membrane a t  f requenc ies  near the bes t  

frequency, as seen in f ig u re  1 .3 .

On the p o s i t iv e  slope of .the curve,  an inc rease  of the 

slope from 7 to  about 24 dB per octave i s  noted. -This slope 

Increase becomes le s s  apparent as h igher  i n t e n s i t y  lev e ls  

are used, and is  p r a c t i c a l l y  undetec tab le  a t  90 dB SPL, 

in d ic a t in g  t h a t  a s a tu r a t io n  occurs a t  h igher  l e v e l s .  This 

would in d ic a te  t h a t  a t  lower l e y e l s ,  the  region of maximum 

displacement v ib r a te s  r e l a t i v e l y  more than a t  higher l e v e l s ,  

g iv ing  r i s e  to  more s e n s i t i v i t y  of the p a r t i c u l a r  region of 

the b a s i l a r  membrane to  low in t e n s i t y  tones of a s p e c i f i c  

frequency. The Mossbauer technique cannot be used with 

lower l e v e l s  of sound p re s su re .  This i s  unfor tuna te  because 

the nonl inear  behavior of the  peak of the curve in f igu re

1.3  can lead to. a r e l a t i v e l y  l a rg e r  d islacement of the BM 

for  low i n t e n s i t i e s  of a s t im u lus  of a given frequency, 

causing the aud i to ry  nerve f i b e r s  to  be sharply  tuned. Some 

experimental f ind ings  in t im ate  th a t  aud i to ry  f ib e r s  may
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Figure.. I *3 Amplitude r a t i o  of BM d isp lacem ent  t o  
t h a t  of the  m alleus .  Note n o n l i n e a r i t y  a t  t h e  top  o f  
the  curve.  (From Rhode 1 9 7 0 .



14

presen t  a sha rpe r  tuning to  a s p e c i f i c  frequency (CF) than 

the tun ing  found on the  b a s i l a r  membrane (Evans 1974, 

Robertson and Manley 1974).

A frequency s e l e c t iv e  b a s i l a r  membrane does not seem to  

be a p r e r e q u i s i t e  for  f in d in g  tuning  in  aud i to ry  nerve 

f i b e r s .  Weiss e t  al  (1976) found no mechanical tuning to  be 

p resen t  on a segment of the b a s i l a r  membrane of the

a l l i g a t o r  l i z a r d ,  but a l l  the  aud i to ry  f i b e r s  of t h i s  animal 

show s i g n i f i c a n t  tuning to  a s p e c i f i c  frequency. In 

mammals, however, the b a s i l a r  membrane seems t o  have

important tuning fu n c t io n .  The sharpness of tuning has been 

shown to  be l a rg e r  than prev ious ly  thought as more ca re fu l  

measurements are being made. Khanna and Leonard (1981) have 

measured high frequency slopes of BM tuning  of up to  720 

dB/octave, a value comparable to  the  tun ing  of s ing le  

f i b e r s .

Some information on the t r a n s i e n t  response of the 

b a s i l a r  membrane movement e x i s t s .  Rhode and Robles (1974) 

used the Mossbauer technique on the b a s i l a r  membrane of the 

s q u i r r e l  monkey and repor ted  th a t  2 components are

d i s t in g u is h a b le  in  the response of the BM to  c l i c k  s t im u l i .  

One of them has a f a s t  decay but the o th e r  has a longer 

decay! r e co n s t ru c t io n  of the  BM movement from the Mossbauer 

da ta  showed r ing ing  in  response to  the c l i c k  th a t  did not 

decay expo n en t ia l ly .  The issue  of h o n l in e a r i ty  has been 

widely d iscussed  during the l a s t  decade. I t  seems th a t
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th e re  i s  a n o n l in e a r i ty  th a t  depends on the phys io log ica l  

condi t ion  of the coch lea ,  d isappear ing  with le s s  than normal 

s t a t e  (Rhode 1973). Wilson and Johnstone (1972) did not 

f ind  n o n l i n e a r i t i e s  in the guinea p ig ,  with t h e i r  cap ac i t iv e  

probe technique,  nor the s a tu r a t io n  d iscussed  above, a t  any 

leve l  below 110 dB SPL. I t  i s  conceivable th a t  the 

phys io log ica l  s t a t e  of t h e i r  su b je c ts  was l e s s  than optimal;  

hence t h e i r  f a i l u r e  to  d e t e c t  n o n l i n e a r i t i e s .
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B. The cochlear  microphonic.

The s t imulus r e l a t e d  p o t e n t i a l  known as coch lear  

microphonic (CM) can be used to  i n d i r e c t l y  i n f e r  b a s i l a r  

membrane movement. The var ious  experiments descr ibed  below 

provide, the da ta  on which, the c o r r e l a t io n  between BM 

movement and CM i s  based.

When a toneburs t  i s  presen ted  to  the  e a r ,  two d i s t i n c t  

types of p o t e n t i a l  are  brought about ,  the cochlear  

microphonic and the summating p o t e n t i a l .  The cochlear

microphonic i s  an e l e c t r i c  p o t e n t i a l  d iscovered  by Wever and 

Bray (1930) genera ted  in the cochlea as sound i s  de l iv e red  

to  i t .  I t  reminds one of the  sound pressure  f i e l d  in f ron t  

of the  eardrum, as does a microphone, th e re fo re  the name.

I t  i s  be l ieved  to  be the aggregate response of many h a i r  

c e l l s  stimulated. s im ultaneously .  With a v ib ra t in g

e lec t ro d e ,  a device t h a t  could mechanically  s t im u la te  the 

cochlear  s t r u c t u r e s  and simultaneously record e l e c t r i c a l  

a c t i v i t y ,  Bekesy showed th a t  the coch lea r  microphonic i s  

p ropo r t iona l  t o  b a s i l a r  membrane motion.

Tasak i ,  Davis and Eldredge (1954) showed tha t

displacements of the b a s i l a r  membrane r e s u l t  in p o te n t i a l  

changes as follows* A displacement of the  BM towards SV

causes the p o t e n t i a l  in  SV to  diminish and the  p o te n t ia l  in

ST to  in c re a se .  A displacement towards ST causes the

p o l a r i t i e s  of these  changes to  r ev e r se .  Bu t le r  and Honrubia 

(1963) came to  e s s e n t i a l l y  the same conclusions .
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Figure I .4 shows t h a t  the CM as recorded from the basal 

tu rn  shows s trong  s i m i l a r i t i e s  to  the BM displacement curve 

go t ten  by Rhode in 1971 ( f ig u re  1 .3 ) .  Even n o n l in e a r t i e s  

seen in the b a s i l a r  membrane movement ( f ig u re  I .3) are  seen 

in the cochlear  microphonic d a ta .

When a tone i s  presen ted  to  the cochlea ,  the CM appears 

s h i f t e d  from the  r e s t i n g  p o te n t i a l  between SV and ST by the 

summating p o t e n t i a l .  . Extensive s tu d ie s  were made by Dallos 

( e .g . .  1973) on these p o t e n t i a l s .  These s tu d ie s  show th a t

cochlear  p o t e n t i a l s  change sy s tem a t ic a l ly  with stimulus 

parameters ( f ig u re  J . 5 ) .  The ro le  of the  SPt i f  any, in the 

e x c i t a t io n  of aud i to ry  nerve f i b e r s  i s  unknown.

Dallos 1973b,1975a, Dallos e t  a l .  1974, and Schmiedt 

and Zwlslocki (1977) found th a t  good agreement e x i s t s  

between b a s i l a r  membrane movement and CM measures. The CM 

t r a c e s  in  f ig u re s  1.4 and 1.5 shows s i m i l a r i t i e s  t o  the data 

from d i r e c t  measures of BM movement ( f ig u re  1 .3 ) .  Schmiedt 

and Zwlslocki compared mechanical measures of BM motion of 

Wilson and Johnstone (1972, 1975), t h e i r  CM data  and the 

data  of D al los .  The agreement i s  ex c e l l en t  between these 

d a ta .  The genera l  consensus i s  th e re fo re  th a t  CM r e f l e c t s  

the b a s i l a r  membrane motion up to  the beet frequency of the 

loca t ion  of the e l e c t ro d e .  Figure 1.6 shows t h e i r  

comparative d a t a .

In the normal cochlea,,  when the. hel icotrema i s  

unobstructed and low. frequency sounds are used, the
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Figure  1*4 N o n l in e a r i t i e s  in co ch lea r  microphonic .  
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r e l a t io n s h ip  between CM and sound phase i s  complicated. 

Dallos ( 1970) s tud ied  t h i s  r e l a t i o n s h i p .  Figure 1.7 shows 

the  r e s u l t  of h i s  study fo r  the c h in c h i l l a  and the guinea 

p ig .  As seen, the phase i s  not. a well behaved funct ion  of 

frequency. This was i n t e rp r e t e d  not as a d iscrepancy  of BM 

movement and CM genera t ion  but r a th e r  as the complex 

r e l a t i o n  between sound and BM movement. The s iz e  of the 

helicotrema. was viewed .as the f a c t o r  g iv ing  the  la rge  

d iscrepancy of  phase c h a r a c t e r i s t i c  between these  animals. 

I f  one wants t o . i n f e r  motion of the b a s i l a r  membrane from 

the CM, one has to  measure, the CM for  each ind iv idua l  

animal,, since fo r  example a small in te ran im al  v a r i a b i l i t y  in 

the. s ize  of he l ico trem a w i l l  a f f e c t  the  phase d r a s t i c a l l y ,  

p a r t i c u l a r l y  between 100 and 200 Hz.

I t  i s  thus reasonably well e s ta b l i sh e d  t h a t  the 

cochlear  microphonic r e f l e c t s  b a s i l a r  membrane movement. 

The cu r ren t  explanat ion  for- t h i s  observa tion  i s  t h a t  ou te r  

h a i r  c e l l s  produce most of the cochlear  microphonic (Dallos 

and Cheatham 1976). The QHCs' c i l i a  being a t tached  to  the 

t e c t o r i a l  membrane w i l l  modulate the ion ic  flow through the 

OHCs (Davis 1965), and produce the  cochlear  microphonic, as 

the shear between the t e c t o r i a l  membrane and r e t i c u l a r  

lamina occurs .  By anatomical c o n s id e ra t io n s ,  t h i s  shear  i s  

thought t o  be p ro p o r t io n a l  to  b a s i l a r  membrane displacement 

(Rhode and G e is le r  1967).

Let us examine c lo se r  the mechani.sms of genera t ion  of
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the cochlear  microphonic and the experiments t h a t  have 

formed our understanding of i t .  A cross s e c t io n  of the 

cochlea was shown in f igure  t . l .  A p o s i t iv e  p o te n t i a l  of 

around 80 mV, the  endocochlear p o te n t i a l  is - found  ins ide  the 

cochlear  duc t .  The function  of t h i s  p o t e n t i a l  i s  thought to 

be th a t  of a d r iv in g  force for  cu r ren t  through the h a i r  

c e l l s  (Davis, 1965). The p o t e n t i a l s  in  scala. v e s ib u l i  and 

tympani as in o ther  e x t r a c e l l u l a r  spaces i s  around 0 mV.

The EP i s  generated by the s t r i a  v a s c u la r i s  (Tasaki and 

Spiropoulos,  1959). All ju n c t io n s  between nonsensory c e l l s  

surrounding the  endocochlear duc t  have zonulae occludentes 

of the in t e r m e d ia t e - to - t i g h t  type and the sensory c e l l s  and 

the basal c e l l s  of the s t r i a  v a s c u la r i s  have t i g h t  jun c t io n s  

(Jahnke, 1975). This provides  the endocochlear duct  with a 

high e l e c t r i c a l  r e s i s t a n c e  to  SV and ST (Bekesy 1951, 

Honrubia and Ward 1969, Asakuma e t  a l .  1978) i f  compared 

with the  r e s i s ta n c e  between for  example SV and ST. S t i l l ,  

the  endocochlear p o t e n t i a l  i s  maintained a t  a la rge  

metabolic expense, evidenced by the f a c t  t h a t  i t  d isappears  

in seconds i f  the  blood supply to  the cochlea i s  c u t ,  a f t e r  

which i t  r eve rse s  p o l a r i t y  and slowly d isappears  (Konishi,  

1974).

I t  seems th e re fo re  t h a t  the endocochlear p o te n t i a l  i s  

Important f o r  the  funct ion  of the cochlea .  Indeed, i f  the 

EP i s  lowered, the a c t i v i t y  of aud i to ry  f i b e r s  i s  g r e a t ly  

hampered ( e .g .  Johnstone 1980, Konishi e t  a l .  1970). The
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model put forward by Davis in 1965 has been widely accepted 

to  explain  the function  of the EP. This model proposes th a t  

the EP toge the r  with the i n t r a c e l l u l a r  r e s t i n g  p o te n t i a l  

p rovider  the p o t e n t i a l  to  d r iv e  cu r ren t  through the ap ica l  

surface  of the h a i r  c e i l .  This c u r r e n t ,  according to  Davis, 

dep o la r ize s  the c e l l ,  making i t  r e le a se  neural t r a n s m i t t e r .  

(This has not been d i r e c t l y  observed in the cochlea ,  and the 

t r a n s m i t t e r  substance i s  s t i l l  to  b e . i d e n t i f i e d ) . At the 

same time the EP v a r ie s  due to the cu r ren t  d ra in  from the 

endocochlear duc t  in to  the h a i r  c e l l s .  Thus cochlear  

microphonic i s  generated..  There i s  some d ispu te  as to. which 

ion c a r r i e s  the cu r ren t  in to  the h a i r  c e l l . .  The general  

consensus i s  th a t  i t  i s  potassium. Konishi e t  a l . (1976)  

showed th a t  i f  potassium ions are not p resen t  in the 

endolymph, the  CM i s  abo l ished .  Corey and Hudspeth (197.9a) 

f ind  th a t  in  the b u l l f ro g  saccu lus ,  any small ca t io n  w il l  

do, but i t  i s  i n t e r e s t i n g  to  note th a t  u n iv e r s a l ly  the f lu id  

surrounding sensory h a i r  c e l l  c i l i a  i s  r i c h  in potassium 

ions.

The sound-to-CM t r a n s f e r  i s  not l i n e a r ,  as proven by 

the following experiments . Nieder and Nieder (1971) 

determined the t r a n s f e r  c h a r a c t e r i s t i c  of the genera to r  of 

cochlear  microphonic from modulation d a ta .  They concluded 

t h a t  the coch lear  microphonic genera to r  in the basa l  tu rn  of 

the guinea pig cochlea i s  not l i n e a r  over any apprec iab le  

range. Two amplitude minima of RW CM due to  an 8 kHz tone 

were found per cycle of a modulating tone of 250 Hz
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presen ted  to g e th e r  with the 8 kHz tone .  The minima of RW CM 

were in f e r r e d  to  occur in  the extreme displacements of the 

b a s i l a r  membrane toward SV and ST. Nieder and Nieder a lso  

found an h y s t e r e s i s  to  be p resen t  in th e  t r a n s f e r  

c h a r a c t e r i s t i c *  in o the r  words* the t r a n s f e r  c h a r a c t e r i s t i c  

corresponding to  the ST-SV swing of the  BM movement due to  

the 250 Hz tone d i f f e r e d  from the  t r a n s f e r  c h a r a c t e r i s t i c  

corresponding to  the opposite  swing, from SV to  ST. Durrant 

and Dallos (1974) s tud ied  the. e f f e c t  of a low frequency 

■"biasing4* st imulus on the  SP response t o  a probe tone .  

E f fec ts  s im i la r  to  the ones observed by Nieder and Nieder on 

the CM were found to  hold fo r  the  SP* such as modulation and 

h y s t e r e s i s .  At. lower le v e l s  of  the  low frequency s t im ulus ,  

the S.P could be enhanced or depressed a t  d i f f e r e n t  phases of 

the LF tone .  For high i n t e n s i t i e s  of the LF tone (over 90 

dB SPL), the  SP was g en e ra l ly  depressed .

C. Hair c e l l s  in the  organ of C o r t i .

Davis viewed the h a i r  c e l l  as a .variable r e s i s t o r !  in 

one d i r e c t io n  of bending of the c i l i a  i t  would decrease the 

h a i r  c e l l o s  r e s i s t a n c e  and in  th e  o the r  increase  i t .  Since 

a cu r ren t  i s  assumed to  pass through the h a i r  ce l l*  t h i s  

cu r ren t  gene ra tes  a p o t e n t i a l  between the in s ide  and ou ts ide  

of the c e l l ,  the cochlear  microphonic. Recent measures of 

i n t r a c e l l u l a r  p o te n t i a l  of ou te r  h a i r  c e l l s  (D al los ,  p r iv a te  

communication, Tanaka e t  a l .  1980) In d ica te  t h a t  the 

p o l a r i t y  of the  i n t r a c e l l u l a r  CM i s  opposite  from th a t  found
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in the sc a la  media. Together with the r e s u l t s  of e . g .

Tasak i ,  Davis and Eldredge, 1954, on the p o l a r i t y  of the

p o te n t i a l  changes when the BM i s  s t a t i c a l l y  d i sp lace d ,  t h i s

would show th a t  the OHCs are  depo la r ized  when the BM is

, d isp laced  towards sc a la  v e s t i b u l i  , s ince the EP becomes

more negative in t h a t  d i r e c t i o n  (an e l e c t r i c a l  c i r c u i t  to

c l a r i f y  t h i s  can be seen in f ig u re  1 .9 ) .  Flock (1971) found

th a t  hyperpo.lar.ization occurs when the s t e r e o c i l i a  a re  moved

away from the  . k inocil ium or basa l  body of a h a i r  c e l l .

D epo la r iza t ion  occurred in the o ther  d i r e c t i o n .  The same

p o l a r i t i e s  were obtained by Hudspeth and Corey (1977).  They

a l so  found in the b u l l f ro g  sacculus  th a t  the d ep o la r iz a t io n  
•

caused by a mechanical s t im ulus  of c i l i a  gave a 3 times 

l a rg e r  d e p o la r iz a t io n  than the h y p e rp o la r iz a t io n  caused by a 

stimulus, moving the  c i l i a  in  the  opposite  d i r e c t i o n  (away 

from the k inoc i l ium ).  The p o l a r i t y  of the CM in d ic a t e s  th a t  

c e l l s  are  • depo la r ized  when the BM i s  moved towards SV. 

Looking a t  the  o r i e n t a t i o n  of h a i r  c e l l s  in the  cochlea one 

concludes t h a t  movement of the BM towards SV bends the  c i l i a  

outwards, towards the lo c a t io n  of the ( v e s t i g i a l )  basal  

body, . . therefore  d e p o la r iz a t io n  occurs .  For the  inner  h a i r  

c e l l s  the r e l a t i o n  between CM and BM movement i s  not as 

c l e a r .  S e l l i c k  and Russel (1980) have shown t h a t  inner  h a i r  

c e l l s  depo la r ize  when the  b a s i l a r  membrane i s  in the  phase 

of maximal v e lo c i ty  towards SV. This i s  perhaps a 

r e f l e c t i o n  of the f a c t  t h a t  the IHCs respond to  v e lo c i ty ,  

because . t h e i r  c i l i a  are  not a t tached  to  the t e c t o r i a l
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membrane.

The r e l a t i o n  between b a s i l a r  membrane movement and h a i r  

c e l l  p o la r i z a t i o n  can be assessed  i n d i r e c t l y  from data  on 

normal and Kanamycln t r e a t e d  guinea pigs (Dallos  e t  a l .  

J 972). In normal animals ,  t r i a n g u l a r  movement of the 

malleus induced a t r ap ezo id a l  CM, r e f l e c t i n g  a d e r iv a t iv e  

r e l a t io n s h ip  between movement of the malleus and BM

movement. The phase, was such th a t  the SV was more p o s i t iv e

during the p o s i t iv e  going slope of the t r i a n g u l a r  movement 

of the malleus,  i . e . ,  when presumably the BM was d isp laced  

towards sc a la  tympani. This in d ic a te s  t h a t  th e  h a i r  c e l l s  

were hyperpola r ized  during the ST displacement of the BM. 

In kanamycln t r e a t e d  animals,  where OHCs were missing, the 

responses were q u i t e  d i f f e r e n t . F i r s t ,  the CM was much

smaller  than in the normal c a se ,  a f a c t  used t o  argue th a t

OHCs produce most of the  CMt secondly ,  only in the

t r a n s i t i o n s  of the  t r i a n g u l a r  motion, of the  malleus was

the re  a CM generated. .  -This would in d ic a te  t h a t  the IHCs 

respond to  the v e lo c i ty  of the  b a s i l a r  membrane. A small 

p o s i t iv e  response was go t ten  in  the negative  t o  p o s i t iv e  

going t r a n s i t i o n s  of the t r i a n g u l a r  sound f i e l d ,  and 

negative response to  t r a n s i t i o n s  from p o s i t iv e  to  negative 

s lope .  By the arguments of h a i r  c e l l  d i r e c t i o n a l i t y  and 

Davis '  modulation theory one concludes t h a t  IHCs are 

depolar ized  in the  t r a n s i t i o n  ST to  SV, i . e .  they are

s e n s i t i v e  to  the v e lo c i ty  of the b a s i l a r  membrane towards

SV.
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Recently demonstration t h a t  h a i r  c e l l s ' s  p o te n t i a l s  can 

a l s o  be sharp ly  tuned to  e l e c t r i c a l  s t im u l i  has become 

a v a i l a b le .  F e t t i p l a c e  and Crawford (1978) showed th a t  

cu r ren t  i n j e c t io n  in to  coch lea r  h a i r  c e l l s  of the t e r r a p in  

w i l l  cause damped o s c i l l a t i o n s  in  the i n t e r n a l  p o te n t i a l  of 

the c e l l .  These o s c i l l a t i o n s  have the  same frequency as the 

c h a r a c t e r i s t i c  frequency fo r  the ce l l ,  when s t im ula ted  

mechanically.  Thus the h a i r  c e l l s  in these  animals seem to 

be e l e c t r i c a l l y  tuned. Russel and. S e l l i c k  (1977) showed 

t h a t  IHCs in the  guinea pig cochlea are  sharp ly  tuned to 

mechanical v ib r a t i o n s  but mammalian cochlear  h a i r  c e l l s  have 

not been shown to  demonstrate the r ing ing  response to 

i n j e c t io n  of cu r ren t  p u lse s .
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D. D epola r iza t ion  of h a i r  c e l l s .

Experiments in d ic a te  th a t  d e p o la r iz a t io n  of h a i r  c e l l s  

causes them to  r e le a s e  t r a n s m i t t e r .  Here we look b r i e f l y  a t  

the mechanisms t h a t  can lead to  d e p o la r iz a t io n  of  h a i r  c e l l s  

in the cochlea .

At l e a s t  th ree  phys io lo g ica l  mechanisms* known to be 

p resen t  in the  cochlea ,  can change the p o la r i z a t i o n  of a 

h a i r  c e l l .  The bending of the c i l i a  i s  one, j u s t  described? 

another  mechanism i s  the e f f e c t  r e s u l t i n g  from a change in 

the  r e s t i n g  p o t e n t i a l s ,  s p e c i f i c a l l y  the EP. Such a change, 

i f  induced,  w i l l  cause changed a c t i v i t y  of the  nerve c e l l s  

( e .g .  Konishi e t  a l .  1970). The two methods of 

s t im u la t ing  a h a i r  c e l l  -  e l e c t r i c a l  and mechanical -  i s  

well demonstrated by Honrubia e t  a l .  1976. These 

re sea rch e rs  s t im u la ted  the l a t e r a l  l i n e  organ of Xenopus 

la ev is  with mechanical v ib r a t i o n s  and a l s o  by applying 

e x t r i n s i c  e l e c t r i c  c u r r e n t .  They recorded from two 

d i f f e r e n t  a f f e r e n t  nerve f i b e r s  inne rva t ing  the same s t i t c h  

in the l a t e r a l  l i n e .  The r e s u l t  i s  shown in f ig u re  1.8.

The two c e l l s  responded s im i l a r ly  to  the e l e c t r i c a l  

s t im ulus ,  but in phase opposi t ion  when the stimulus was 

mechanical. Presumably-this  was because the two h a i r  c e l l s  

t h a t  .the f i b e r s  innervated  had d i f f e r e n t  o r i e n ta t io n  of 

t h e i r  c i l i a  in the  v ib ra t io n  f i e l d .  . Another important 

f ind ing  of Honrubia e t  a l .  was th a t  e l e c t r i c a l  and 

mechanical, s t im u l i  lead to  dynamically equ iva len t  e x c i ta t io n
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Figure  1.8 Cycle his tograms from two f i b e r s  being 
s t im u la ted  e l e c t r i c a l l y  and mechanical ly  with  a 16 Hz 
s in u s o id a l  s t im u lu s .  Both f i b e r s  show th e  same phase 
of a c t i v i t y  fo r  e l e c t r i c a l  s t i m u la t io n ,  but  o p p o s i te  
phase fo r  mechanical s t i m u la t io n ,  sugges t ing  o p p o s i t e  
o r i e n t a t i o n  o f  the c i l i a  f o r  the two h a i r  c e l l s  t h a t  
a re  inne rva ted  by these  f i b e r s .  (Honrubia e t  a l .  
1976).
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of nerve f ibe rs*  i . e .  when the  amplitude of the st imulus 

—e l e c t r i c a l  o r  mechanical -  was changed by equal amount of 

dec ibels*  the same change of f i b e r  d ischarge  ra te  was 

observed. S im ila r  r e s u l t s  were repor ted  by Sand et  

a l . (  1.975) on the mudpuppy. They found th a t  p o s i t iv e  

e l e c t r i c a l  i n t r a c e l l u l a r  s t im u la t io n  increased  the  nerve 

d isch a rg es .

The th i r d  mechanism th a t  presumably changes 

i n t r a c e l l u l a r  p o la r i z a t i o n  of a t  l e a s t  ou te r  h a i r  c e l l s  is  

the  e f f e r e n t  a c t i v i t y .  . Galambos (1956) demonstrated th a t  

s t im u la t io n  of  the  f lo o r  of the medulla ( o l lvo -coch lea r  

pathway) caused a supress ion  of the APs evoked by a . c l i c k .  

Fex (1959) showed th a t  the e f f e r e n t  s t im u la t io n  led to  an 

augmentation of cochlear  microphonic. Fex (1967) a l so  

showed th a t  e f f e r e n t . s t i m u la t i o n  caused a diminution of the 

endocochlear p o t e n t i a l .  Both th e se  e f f e c t s*  the CM 

augmentation and the  EP diminution were explained with 

Davis-' (1965) scheme by the  fo llowing argument* The cu rren t  

through OHCs was Increased ,  because the h y p e rp o la r iz a t io n  of 

OHCs caused by the e f f e r e n t  s t im u la t io n  genera ted  a g r e a t e r  

p o t e n t i a l  d i f f e r e n c e  between the  e x t e r i o r  su r face  of the  

OHCs-' c i l i a  and the i n t e rn a l  p o t e n t i a l  of the c e l l s .  

Increas ing  th e  cu r ren t  d ra in  from the  endolymphatic space, 

thus decreasing, the  EP and Increas ing  the  CM. Desmedt and 

Robertson (1975) showed t h a t  s t im u la t io n  of the crossed 

o l iv o -co ch lea r  bundle (COCB) of e f f e r e n t  f i b e r s  th a t  

innerva te  the cochlea can cause a decrease  in EP by a few
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mV. The authors  p o s tu la te  th a t  the s t im u la t io n  a f f e c t s  an 

Ion channel on the  base of the  h a i r  c e l l s  t h a t  leads to  a 

hy p e rp o la r iz a t io n  of the c e l l .  This channel seems to  work 

with small anions as evidenced by the f a c t  t h a t  i f  la rge 

anions are  used in s tead  of ch lo r id e  in the  f lu id  bathing the 

basa l  end of  the h a i r  c e l l s ,  the COCB s t im u la t io n  does not 

have i t s  normal e f f e c t  on the EP.

Wiederhold and Xiang (1970) showed t h a t  s t im u la t io n  of 

the e f f e r e n t  system reduced a c t i v i t y  of s in g le  aud i to ry  

f i b e r s  but d id  not in f luence  the spontaneous d isch a rg es .  

.This w ould . ind ica te  t h a t  the e f f e c t  of e f f e r e n t  s t im u la t io n  

i s  p re sy n a p t ic ,  s ince  a pos tsynap t lc  e f f e c t  would change the 

spontaneous r a t e .  G e is le r  (1974a,b) proposed a c i r c u i t  

model of the organ of Cort.1 to  explain  those f in d in g s ,  shown 

in f igu re  I .9 .  The c i r c u i t  i s  based on Davis '  concepts ,  

modified to  inc lude inner  and o u te r  h a i r  c e l l s  and an 

e f f e r e n t  e f f e c t .  This .model., having common cu r ren t  sources 

fo r  inner  and ou te r  h a i r  c e l l s  can a l s o  expla in  i n t e r a c t i o n  

between h a i r  c e l l  popu la t ions  through the  ex te rna l  

p o t e n t i a l s .

Brown e t  a l .  (1981) found t h a t  the inner  h a i r  c e l l  

I n t r a c e l l u l a r  recep to r  p o t e n t i a l s  are  decreased by crossed 

o l iv o -co ch lea r  bundle (COCB) s t im ula t ion*  the  r e s t i n g  

membrane p o te n t i a l  was unchanged. These r e sea rch e rs  suggest 

t h a t  s ince  the  COCB p r im ar i ly  Innervates  the  ou te r  h a i r  

c e l l s ,  these  r e s u l t s  may be a. demonstration of the
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- F igure  1.9  Model t o  exp la in  th e  d im inu t ion  o f  EP and 
augmentation, o f  CM observed du r ing  COCB s t i m u l a t i o n .  
From Gel s i  e r  1.974a.
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i n t e r a c t i o n  between ou te r  and inner  h a i r  c e l l s .

E. T ransm it te r  r e l e a s e .

The next c ru c i a l  Issue i s  the r e l a t i o n  between c e l l

p o la r i z a t i o n  and t r a n s m i t t e r  r e l e a s e .  I t  i s  c l e a r  th a t

mechanical,  e l e c t r i c a l  and chemical changes in the h a i r

c e l l ' s  environment r e s u l t  in  changes in i t s  in te rn a l

p o t e n t i a l .  Whether the p o la r i z a t i o n  of  the c e l l  i s  the sole 

cause of  t r a n s m i t t e r  r e le a s e  remains to  be shown, but a l l  

evidence in d ic a t e s  t h a t  d ep o la r iz a t io n  i s  one of the causes 

of t r a n s m i t t e r  r e l e a s e .

Furukawa, I s h i i  and. Matsuura (1972) showed th a t  there  

i s  a one-to-one correspondence between h a i r  c e l l  

d ep o la r iz a t io n  and e x c i t a to ry  post  sy n ap t ic  p o t e n t i a l s  

(EPSPs) in the g o ld f ish  sacculus ( in n e r  e a r ) .  This i s  a 

demonstration th a t  - d e p o la r iz a t io n  causes t r a n s m i t t e r  

r e l e a s e .  Receptor p o t e n t i a l s  a t  l e v e l s  of only a few 

microvolts  can e l i c i t  a response from a rece p to r  c e l l ,  as 

demonstrated in experiments with the e l e c t ro r e c e p to r s  on 

f i s h .  Llssman and Machin in 1958 showed th a t  f i e l d s  of a 

ten th  of a. microvolt  per  cen t im ete r  could be de tec ted  by 

f i s h .  Sand e t  a l .  (1975) demonstrated, by in je c t in g  

cu r ren t  in to  the  h a i r  c e l l  of mudpuppy and recording nerve 

f i b e r  a c t i v i t y ,  t h a t  the re  i s  a causal r e l a t io n s h i p  between 

h a i r  c e l l  r e c e p to r  p o te n t i a l  and t r a n s m i t t e r  r e l e a s e .  Ten 

times l a rg e r  cu r ren t  In jec ted  d i r e c t l y  in to  che nerve
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terminal did not e l i c i t  neural a c t i v i t y .  Sand and h is  

co lleagues viewed t h i s  as a proof th a t  i n t r a c e l l u l a r  

d e p o la r iz a t io n  of the h a i r  c e l l  causes t r a n s m i t t e r  r e le a se  

which in  tu rn  causes a c t i v i t y  t o  occur in the  nerve 

te rm in a l .  The genera l  consensus i s  th e re fo re  th a t  

d e p o la r iz a t io n  i s  one, i f  not the  only cause of t r a n s m i t t e r  

r e le a s e .  The frequency-tuning curves (FTCs) of nerve f ib e r s  

and i s o d e p o la r iz a t io n  curves found by Russell  and S e l l l c k  

(1978) in the  i n t r a c e l l u l a r  p o te n t i a l  of inner  h a i r  c e l l s  

a re  s im i la r .  The FTC i s  cons truc ted  by f in d in g  the minimum 

i n t e n s i t y  of sound needed to  inc rease  the f i r i n g  r a t e  by a 

d e tec tab le  amount! the i so d e p o la r iz a t io n  curves are  

cons truc ted  by ad ju s t in g  the  sound so th a t  a c e r t a in  

d e p o la r iz a t io n  i s  achieved.  The s i m i l a r i t y  of these  curves 

to  each o the r  suggests  a causal  r e l a t io n s h i p  between 

d ep o la r iz a t io n  and inc rease  of f i r i n g  r a t e .

Konishi e t  a l .  (1970) and Teas e t  a l .  (1970) showed 

t h a t  e l e c t r i c a l  cu r ren t  passed from SV to  ST increased  the 

spontaneous a c t i v i t y  of most f i b e r s  but decreased the 

a c t i v i t y  of some. The cu r ren t  d i r e c t io n  th a t  made SV more 

p o s i t iv e  presumably caused, d e p o la r iz a t io n  of the h a i r  c e l l s ,  

which caused the  spontaneous a c t i v i t y  of the  nerve f i b e r s  to  

in c re ase .  The f a c t  th a t  some f ib e r s  decreased a c t i v i t y  may 

show hyp erp o la r iza t io n  to  be e x c i t a t o r y ,  but more l i k e ly  i t  

i s  a r e f l e c t i o n  of the  complex e l e c t r i c a l  pathways in the  

cochlear  duc t .
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F. Single u n i t  a c t i v i t y  and b a s i l a r  membrane motion,

Tasaki in 1954 was f i r s t  to  record  from s in g le  aud i to ry  

nerve f i b e r s .  He found th a t  f i b e r s  were tuned to  a s p e c i f i c  

frequency and a lso  th a t  they locked t h e i r  f i r i n g  to  a 

c e r t a in  phase of a low frequency s t im ulus ,  as seen in f igu re  

1 .10 .  This phase locking to  low f requenc ies  (under 3-4 kHz) 

has been repor ted  by many o the rs  (Xiang, 19651 Rose e t  a l .  

1967* Anderson e t  a l .  1971* Xiang and Moxon 1974). 

Anderson e t  a l .  found th a t  th e re  e x i s t s  a l i n e a r  

r e l a t io n s h ip  between frequency of a s t im ulus  of f ixed 

i n t e n s i t y  and the  p o s i t io n  of the  neural  d ischarge  ( f i r i n g )  

w ith in  the  st imulus cyc le .  The same r e l a t i o n  was shown to 

hold by G e is le r  e t  a l .  1974 ( f ig u re  I .  II ) .  The 

approximately s t r a i g h t  l i n e s  in d ic a te  th a t  th e re  i s  a 

cons tan t  de lay  between the s t imulus  and the neural  d ischarge 

th a t  i s  independent of the frequency o f  the s t im ulus .

The transm iss ion  of s ig n a l s  along the cochlear  

p a r t i t i o n  i s  . approximately nond ispe rs ive .  Anderson e t  a l .  

1971, concluded from delay—time s tu d ie s  of the  f i b e r ' s  

responses t h a t  the t r a v e l  time in the cochlea was frequency 

independent.  This i s  i n d i r e c t l y  implied in  Rose 's  e t  a l .  

(1971) f in d in g s ,  t h a t  the shape of the  s t imulus i s  conserved 

in the f i b e r ' s  response.  P f e i f f e r  and Molnar (1970) s tud ied  

the Fourie r  components of coch lea r  microphonic and s ing le  

aud i to ry  f i b e r  responses .  They noted s trong s i m i l a r i t y  

between the magnitude of those components and the components



Figure 1.10 S ing le  f i b e r  re sp o n se s .  Lower 
t r a c e <V e r t i c a l  i s  the  1000 Hz s t im ulus  as recorded 
with  a m onitoring  microphone. Upper t r a c e * V e r t i c a l  i s  
f i b e r  a c t i v i t y .  (From Tasakl 1954).
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of CM, and concluded th a t  I t  was probable t h a t  the CM was 

not an epiphenomenon. Since the CM i s  a c o r r e l a t e  of BM 

movement., t h i s  s i m i l a r i t y  could be due to  BM movement 

d i r e c t l y ,  not to  the CM per se .

Dallos and Cheatham (1971) showed t h a t  the  cochlear  

microphonic t r a v e l  time d isp la y s  the same independence from 

the frequency. Greenwood (1977) has c a lc u la te d  from the 

da ta  of Rhode (1971) th a t  the t r a v e l  time fo r  a s igna l  of 

frequency near the bes t  f o r  the  lo ca t io n  in ques t ion  i s  

somewhat s h o r t e r  than t h a t  f o r  lower f requenc ies .  On the 

o the r  hand, comparison of c l i c k  la tency  and s lope measures 

on p l o t s  of phase of  f i r i n g  versus frequency such as f igu re  

I . I I  give s im i l a r  r e s u l t s  (Goldstein e t  a l .  1971), 

in d ic a t in g  t h a t  the  d i s p e r s io n ,  i f  any. I s  sm all .  I t  i s  

th e re fo r e  reasonably  well e s ta b l i sh e d  th a t  t r a v e l l i n g  time 

along the  coch lear  p a r t i t i o n  i s  r e f l e c t e d  in the response 

time of the f i b e r s  in a f a i r l y  simple way.

Kiang and Moxon s tud ied  the low frequency • ' • ta i ls4' of 

tuning curves .  .They found th a t  the phase of response of any 

f i b e r  i s  about cons tan t  f o r  low frequency s t im u l i  (300 Hz), 

i f  the f i b e r ' s  CF is  above 8 kHz ( f ig u re  J . I 2 ) .

Soon i t  became c l e a r  th a t  the phase r e l a t i o n  between 

the s t imulus and the f i b e r  a c t i v i t y  i s  not t r i v i a l .  

Changing the i n t e n s i t y  of a pure tone s t imulus w i l l  change 

the phase of f i r i .ng  of the  f i b e r  by a s i g n i f i c a n t  amount. 

For a f i b e r  with CF approximately 1400 Hz, Anderson e t  a l .
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(1971) found th a t  a 500 Hz tone w i l l  cause the  f i b e r  to  f i r e  

almost 90 degrees l a t e r  by inc reas ing  the i n t e n s i t y  of the 

500 Hz tone from 70 to  80 dB SPL. This i s  in c o n t r a s t  with 

l a t e n c i e s  of . f i r in g  observed fo r  c l i c k  s t i m u l i ,  t h a t  always 

become s h o r t e r ,  or s tay  the same with increased  i n t e n s i t y  of 

the s t im u lus .  J .B .  A l le n 's  p re l im inary  r e s u l t s  (Allen 1980, 

p r iv a te  communication) and a l so  E. B e lk in ' s  r e s u l t s  in our 

lab o ra to ry  show the  same increase, in la tency  fo r  higher 

i n t e n s i t y  le v e l s  of the s in u so id a l  s t i m u l i .  Allen a l so  

shows th a t  w ith in  a few dB of i n t e n s i t y  In c rease ,  a la rge  

inc rease  of la tency  may occur,  corresponding to  angles of up 

to  180 degrees .

I t  i s  p o ss ib le  that, t h i s  phase jump i s  caused by the 

phenomenon of  "peak s p l i t t i n g " ,  commonly observed in our 

labo ra to ry  in the. his tograms o f  the aud i to ry  nerve a c t i v i t y  

in  the c h in c h i l l a  to  low frequency tones!  Two or  more peaks 

appear per cycle o f  the LF tone ,  . the ir  amplitude,  and to  a 

l e s s e r  degree t h e i r  p o s i t io n  w ith in  the per iod  vary in a 

n o n t r iv i a l  manner w ith  s t im ulus  I n t e n s i t y .  Oshima e t  a l .  

(1980) repor ted  the same phenomenon In the  g e r b i l ,  but did 

not f ind  i t  in  the guinea p ig .  Johnson (1.980) found peak 

s p l i t t i n g  in the responses of cochlear  f i b e r s  of  the c a t ,  

fo r  f requencies  lower than 450 Hz. The o r ig in  of peak 

s p l i t t i n g  i s  unknown, and the name might be a misnomer, 

s ince  i t  i s  not known whether i t  i s  one peak t h a t  s p l i t s  

in to  two or whether d i f f e r e n t  mechanisms genera te  each peak.
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As to  the exact  phase of movement of the BM as f i b e r  

e x c i t a t io n  takes  p la c e ,  th e re  i s  a c o n f l i c t  of views. 

Konishi and Nielsen (1973 and 1973). s tud ied  neural  responses 

to  s t a t io n a ry  displacements of the b a s i l a r  membrane. These 

re sea rche rs  plugged the hel ico trem a with bone wax, in  order  

to  c rea te ,  s t a t i c  p ressu re  d i f fe re n ce  between the 

perilymphatic s c a la e .  They showed t h a t . t h i s  opera t ion  did 

not have d r a s t i c  e f f e c t s  on the cochlear  mechanics. They 

found th a t  a la rge  p o r t io n  of the  f ib e r s  respond to  steady 

displacement of the b a s i l a r  membrane towards sca la  tympani, 

a d i r e c t i o n  thought to  in h ib i t  both inner  and o u te r  h a i r  

c e l l s .  F ibers  of low CF a l s o  showed responses during the 

t r a n s i t i o n s  of the st imulus from one p o l a r i t y  to  the o th e r .  

Only 5% of the  f ib e r s  responded to  a s teady displacement of 

the BM toward sc a la  v e s t i b u l i .

In 1973, Zwislocki and Sokolich. a r r iv e d  a t  conclusions 

in  general  agreement with the Konishi and Nielsen study. 

They used low frequency t r a p e z o id a l  s t im u l i  and found th a t  

f i b e r s  could respond both to  su s ta in e d  displacements and to 

v e lo c i ty  of the b a s i l a r  membrane towards ST. Sokolich 

(1977) s tud ied  responses to  low frequency t r i a n g u l a r  

s ig n a l s .  A c o n s i s te n t  f ind ing  was t h a t  the c h a r a c t e r i s t i c  

response of a nerve f i b e r  i s  dependent on the  f i b e r ' s  CF, 

but no dependency on i n t e n s i t y  was observed. Sokolich 

d iv ided the responses in to  3 groups, according to  the 

f i b e r s '  CF, and concluded th a t  t y p i c a l ly  the f i b e r s  would 

respond in a fash ion  summarized in the following table*
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BM displacement* 1<CF<2 3<CF<6 8<CF
toward SV inh inh inh

toward ST ex ex inh

ST to  SV ex inh ex

SV to  ST inh ex ex

These f in d in g s  demonstrate well the apparent complexity 

of the  r e l a t i o n  between BM movement and f i r i n g  of f i b e r s .

In Kanamycin t r e a t e d  g e r b i l s f Sokolich found a v a r ie ty  

of responses .  Here again an unexpected r e s u l t  was gotten* 

F ibers  thought t o  innerva te  reg ions  of  the  cochlea where 

o u te r  h a i r  c e l l s  had been des t royed ,  showed continuous 

. f i r in g  as the BM was d isp laced  toward sca la  v e s t i b u l i  by the  

t r i a n g u l a r  s t im u lu s ,  throughout a 10 ms per iod .  This would 

in d ic a te  th a t  inner  h a i r  c e l l s  might be BM displacement 

d e t e c t o r s .  As in  a l l  experiments with Kanamycin-lesioned 

coch leas ,  i t  i s  d i f f i c u l t  t o  sep a ra te  regions  of pure 

damage. There i s  always danger t h a t  the IHCs are  abnormal, 

t h a t  the region in ques t ion  .has a p a r t i a l  complement of 

OHCs, or t h a t  the  assessment of the  bes t  frequency a t  a 

s p e c i f i e d  region i s  i n c o r r e c t .

The in f luence  of a low frequency tone on the a c t i v i t y  

of a f ib e r  due to  a shor t  tone bu rs t  a t  CF was s tud ied  by 

Romahn and Boerger (1978). They found t h a t  7% of the f ib e r s  

encountered showed d i f f e r e n t  response to  the b u rs t  depending 

on where the  b u r s t  was loca ted  within the  LF s t im ulus .  93% 

showed no d i f f e re n c e  in a c t i v i t y  when the tone b u r s t  was
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presen ted  a t  d i f f e r e n t  phases of the low frequency tone .  

Since . t h i s  i s  approximately the r a t i o  of a f f e r e n t s

inn e rv a t in g  IHCs and DHCs (Spoendlin J972),  the authors  

suggest  th a t  the responses a re  r e f l e c t i o n  of the ex is tence  

of two d i f f e r e n t  popu la t ions  of nerve f i b e r s .  This r e s u l t  

i s  in  c o n t r a s t  with the r e s u l t s  of AP experiments reviewed

l a t e r .  There i t  i s  demonstrated th a t  APs are inva r iab ly

in f luenced  by low frequency tones of s u f f i c i e n t  i n t e n s i t y .  

Unfortunate ly  the data  of  Romahn and Boerger do not permit a 

c o r r e l a t i o n  to  be made between the phase of masking of the 

response of  u n i t s  due to  the  tone b u r s t  and the  phase of 

b a s i l a r  membrane movement* because a c o r r e l a t e  of the BM 

movement such as  the CM i s  u n av a i la b le .

The response to  c l i c k  s t im u l i  has been much s tud ied  

((Clang, 1965, P f e i f f e r  and Kim, 1972). A la tency  d i f fe ren ce  

in the response of the f i b e r s  i s  observed, depending on the 

p o l a r i t y  of the  c l i c k  * For r a r e f a c t io n  c l i c k s ,  the f i r s t  

b u r s t  of a p e r io d ic  a c t i v i t y  comes e a r l i e r .  The c l i c k  

response i s  r e p e t i t i v e ,  and the per iod  of t h i s  a c t i v i t y  has 

been shown to  have the value l/CF. Xiang e t  a l .  (1965) 

showed th a t  these  a c t i v i t y  b u r s t s  i n t e r l a c e  in time for  

r a r e f a c t io n  and condensation c l i c k s .  An explanat ion  of t h i s  

observat ion  i s  t h a t  the f i r i n g  takes  p lace  in a c e r t a in  

d i r e c t io n  of BM movement, and - the re fo re  h a l f  a per iod  of CF 

separa tee  the  r a r e f a c t io n  and condensation c l i c k  responses 

(Weiss 1966). Goblick and P f e i f f e r  (1969) at tempted to 

cancel the secondary peak of c l i c k  his tograms with a second
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c l i c k ,  d e l iv e red  a shor t  i n t e r v a l  of time a f t e r  the f . i r s t  

c l i c k .  They found a remarkable spread in timing and 

in t e n s i t y  of the second c l i c k  needed to  cancel a peak, and 

in t e rp r e t e d  t h i s  as evidence of n o n l in e a r i ty  in  the 

response.

There i s  a d iscrepancy between the r e s u l t s  obtained 

with low frequency s t im u la t io n  and the. physiology of 

cochlear  h a i r  c e l l s  as descr ibed  by Flock in 1971, and 

Hudspeth and Corey (1977). Also, r e s u l t s  of experiments 

using c l i c k s  do not agree with the ones using low frequency 

s t im u l i .  Kiang e t  a l .  (1965) concluded th a t  r a r e f a c t io n  

moved the  b a s i l a r  membrane in such a d i r e c t i o n  as to  

inc rease  a c t i v i t y  of the nerve f i b e r s .  The f i r s t  

consequence of s t im u la t in g  the cochlea with a r a r e f a c t io n  

c l i c k  i s  a displacement towards SV of the b a s i l a r  membrane. 

The c l i c k  experiments are  th e re fo re  in consonance with the 

c l a s s i c a l  view of  h a i r  c e l l  e x c i t a t i o n  and o r i e n t a t i o n  of 

the c i l i a .  The s t a t i c  and low frequency experiments give 

more e x c i t a t io n  g en e ra l ly  as th e  BM i s  d isp laced  toward ST. 

The d iscrepancy of r e s u l t s  could be due to  the  very 

d i f f e r e n t  s t im u l i  used. IConishi and N ie lsen ,  and Zwislocki 

and Sokolich used very low frequency s t im u l i ,  whereas a 

c l i c k  con ta ins  la rge  energy a t  high f requenc ies .  The 

v e lo c i ty  of the BM movement and po ss ib ly  th e  absolu te  

displacement are  th e re fo re  of d i f f e r e n t  magnitude fo r  these 

two kinds of  s t i m u l i .
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The experiments above in d ic a te  th a t  the re  i s  a 

r e l a t io n s h ip  between the phase of BM motion and audi tory  

f i b e r  r e sposes ,  although i t  i s  a complicated one. Also, the 

amplitude of v ib ra t io n  of the BM i s  r e f l e c t e d  in the f i r i n g

r a t e  of the nerve f i b e r s .  This was a lready evident  from

Tasaki-'s study in 1984. More sys tematic  search fo r  the 

prec ise ,  r e l a t io n s h i p  was made by Kiang in  1965, P f e i f f e r  and 

Molnar 1970, Hose a t  a l .  1.971, Anderson e t  a l .  1971,

G e is le r  e t  al  1974, Kiang and Moxon 1974 and Palmer and

Evans 1980. Kiang (1965) concluded t h a t  the r a t e  of 

d ischarge of a s in g le  neuron being s t im u la ted  a t  CF 4,i s  not 

s u f f i c i e n t  to  spec ify  the  leve l  of  the  s t imulus11. F ibers  of 

same CF can have d i f f e r e n t  spontaneous r a t e s ,  d i f f e r e n t  

th resho lds  of  f i r i n g  and d i f f e r e n t  inpu t -ou tpu t  fu n c t io n s ,  

as c l e a r l y  seen in f ig u re  1.13.

G e is le r  e t  a l .  (1974) concluded from the d i f f e r e n c e s  

seen in neura l  and b a s i l a r  membrane da ta  th a t  the b a s i l a r  

membrane displacement could not be the  only input t o  a 

f i b e r ,  and t h a t  the v a r i a b i l i t y  seen in the neural  data 

suggested a supress ive  mechanism to  be p r e s e n t .  The unknown 

phase r e l a t i o n s  between the  sound a t  the tympanic membrane 

and the neural  d ischarges  did  not permit G e is le r  e t  a l .  to  

make conclusions about the  abso lu te  phase of the BM movement 

when f i r i n g  took p la c e .

From the phase da ta  of  Anderson e t  a l .  (1971), 

P f e i f f e r  and Molnar ( f ig u re  3 .7)  and G e is le r  e t  a l .  ( f igu re
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I .  II)  one ought to  be able t o  ex t ra p o la te  the phase of 

d ischarge  to the  zero-frequency and thus g e t  the phase 

r e l a t i o n  between f i b e r  f i r i n g  and sound p re s su re .  There i s ,  

however, an unknown de lay  incorpora ted  in to  some of these  

d a t a ,  e .g .  the da ta  in f ig u re  3 .7 .  In the da ta  in f igu re  

I .  II the l i n e s  a l l  seem to  ex t ra p o la te  and cross  the 

v e r t i c a l  ax i s  in the  i n t e r v a l  0 to  2 i r .  The e r r o r s  in

making the e x t r a p o la t io n  a re  probably too  la rg e  in order  for  

one to  determine t h i s  phase to  a narrower i n t e r v a l .
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G. Whole nerve ac t io n  p o t e n t i a l s

The whole nerve ac t io n  p o te n t i a l  (AP) recorded ins ide  

and in the  v i c i n i t y  of the cochlea i s  a m an ife s ta t ion  of 

synchronous a c t i v i t y  of a number of aud i to ry  f i b e r s .  

Goldste in  and Kiang (1958) suggested,  in a t h e o r e t i c a l  

model, a c o r r e l a t i o n  between the  AP and s in g le  f i b e r  f i r i n g .  

This model i s  based on an assessment of the c o n t r ib u t io n  

from each ind iv idua l  nerve f ib e r  t o  the  AP. A p r o b a b i l i ty  

d en s i ty  fu n c t io n  P ( t )  i s  def ined  as the  p r o b a b i l i t y  of a 

f i b e r  f i r i n g  a t  a c e r t a in  time fo r  a c e r t a in  s t im u lus .  This 

f i r i n g  causes a u n i t  response of voltage U(t.) to  be 

generated at. the recording  lo c a t io n .  . The e f f e c t  of a large 

number of u n i t  responses on the p o t e n t i a l  measured with a 

g ross  e le c t ro d e  was t h e r e f o r e -p o s tu la te d  to  be

AV(t)-=N J P(t)U(t-T )dx,
. -.0

N being the number of f i b e r s  . t h a t  have a p o s s i b i l i t y  of 

co n t r ib u t in g  to  the  AP.

The v a l i d i t y  of t h i s  formula has been demonstrated by 

f ind ing  the values  of P and, U from experimental d a t a .  P i s  

assessed  from his tograms of s in g l e  u n i t  a c t i v i t y .  This is  

p o ss ib le  because the post—stim ulus  histograms of  f i b e r  

a c t i v i t y  provide a good approximation of the p r o b a b i l i ty  

func t ion  of a f i b e r  f i r i n g  given a s u f f i c i e n t l y  la rge  amount 

of samples. U, the u n i t  of c o n t r ib u t io n  of a s ing le  spike
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to  the AP was measured d i r e c t l y  by Kiang e t  a l .  (1976). 

These re se a rch e rs  averaged the RW waveform, using s ing le  

u n i t  a c t i v i t y  ( i . e .  sp ikes)  recorded on the audi tory  nerve 

to  t r i g g e r  the averager .  Because the RW a c t i v i t y  r e f l e c t s  

responses of a group of s ing le  f i b e r s  t h a t  f i r e  p r io r  to  the 

spike from one of  these  f i b e r s  being d e tec ted  on the nerve 

( th e re  i s  a conduction time involve before  the spike is  

d e t e c t e d ) ,  the r e le v an t  average extended t o  t imes before the 

t r i g g e r  spike was a v a i l a b l e .  This was solved by having a 

d i g i t a l  delay l in e  to  include RW data  t h a t  preceded the 

t r i g g e r  sp ikes .

The APs e l i c i t e d  by c l i c k s  are  s im i la r  to  APs e l i c i t e d  

by high frequency tone . b u r e t s ,  or  by tone b u r s t s  of high 

in t e n s i t y .  Tone b u r s t s  of lower frequency and lower 

i n t e n s i t y  e l i c i t  APs with l a r g e r  la ten c y .  Teas, Eldredge 

and Davis (1962) presen ted  c l i c k s  in the presence of noise 

of var ious  frequency bands. They demonstrated th a t  the 

response to  the c l i c k  was d i f f e r e n t i a l l y  a f f e c t e d  by noise 

bands of d i f f e r e n t  cen te r  f requency, in d ic a t in g  th a t  the 

c l i c k  AP was produced by a la rge  p o r t io n  of the  nerve c e l l s  

along the b a s i l a r  membrane. By masking the basa l  region 

with high pass, f i l t e r e d  no ise ,  Ozdamar (1975) and dzdamar 

and Dallos (1978) have shown a c l e a r  dependence of the AP on 

the  frequency of a tone burst,  p resen ted  with the no ise .  

S im ila r  s tu d i e s  by Antoli-Candela and Kiang (1978) 

demonstrated a good c o r r e l a t i o n  between APs and s ing le  f ib e r  

responses to  c l i c k  s t i m u l i .
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Another method of demonstrating the place of genera t ion  

of the AP along the BM was devised by Da11 os and Cheatham 

(1976b). They masked the AP due to  a probe tone with 

masking tones of d i f f e r e n t  f requenc ies .  Masking tones of 

f requencies  near the probe torve frequency were the  most 

e f f e c t i v e .  A tuning curve ( p lo t t i n g  the leve l  of masker 

needed to  reduce the AP due to  the  probe tone by a c e r t a in  

amount as a funct ion  of the  frequency of the  masker) shows 

s trong  s i m i l a r i t i e s  to  a s in g le  f i b e r  tuning curve.

These s tu d ie s  in d ic a te  t h a t  the AP can to  a c e r t a in  

ex ten t  be used to  i n f e r  s ing le  f i b r e  a c t i v i t y .  Experiments 

with o to tox ic  drugs show t h a t  the AP th resho ld  curves -  i . e .  

curves p l o t t i n g  minimum i n t e n s i t y  needed to  e l i c i t  a v i s i b l e  

AP on an averaging computer, versus  frequency -  show the 

same kind of  d ev ia t ion  from normal th re sh o ld s  as the 

th resho lds  of s in g le  u n i t s  in the same animal (Dallas  e t  a l .  

.1977, 1978, Johnstone e t  a l .  1979). In the experiments

descr ibed  in Chapter 3 ,  the AP was th e re fo re  used to  measure 

i n d i r e c t l y  the e f f e c t s  of a low frequency tone on the 

response of au d i to ry  f i b e r s  as these  were s t im u la ted  by a 

tone b u r s t .

Experiments on the in f luence  of low frequency s t im u l i  

on the  AP due to  tone b u r s t s  have been rep o r ted .  Eldredge 

(1976) presen ted  c l i c k s  superimposed on "thumps" or  low 

frequency impulses in the sound, f i e l d  l a s t i n g  a few 

m il l iseconds .  He presented  the c l i c k s  on d i f f e r e n t  phases
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of the thump and found th a t  when the  c l i c k  was presen ted  a t

the time when the CM due to  the  thump was becoming more

p os i t ive*  a suppress ion of the AP due to  the c l i c k  was

observed, Eldredge specula ted  t h a t  i t  could be the ro le  of

the CM to  provide a suppress ion of f i b e r  a c t i v i t y  in c e r t a in  

phases of the  s t im ulus .  Another explanat ion  of  t h i s  

phenomenon could be th a t  the thump b iased  the b a s i l a r

membrane, thus  in f luenc ing  the  production of  AP. For 

c e r t a i n  combinations, o f  thump and c l i c k  l e v e l s ,  the  AP was

suppressed in both phases of the  CM due to  the thump. This

c o r r e l a t e s  well with the  r e s u l t s  of the  experiments

descr ibed  in Chapter 3 and with the psychoacoustic  data  of 

Zwicker, reviewed below.

H. Psychoacoustic  s tu d i e s .

The s tu d ie s  of APs and s in g le  u n i t  a c t i v i t y ,  reviewed 

above, t h a t  employed low frequency tones and thumps were 

done in  an attempt to  b ia s  the  b a s i l a r  membrane in a c e r t a in  

d i r e c t io n  so t h a t  the. in f luence  of such a b ia s  on the normal 

responses of the  aud i to ry  f i b e r s  could be a s sessed .  S im ila r  

experiments have been attempted i n  pshychoacoustlc s tu d i e s .

Oeatherage and Henderson (1967) showed th a t  p lac ing  a 

sh o r t  tone b u rs t  on d i f f e r e n t  phases of a low frequency 

s inuso id  w il l  change the th resho ld  of hearing  the tone.  

They found th a t  p lac ing  the tone on a c e r t a i n  phase of the
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LF tone made i t  poss ib le  to  hear  the tone b u r s t ,  even when 

presen ted  a t  an i n t e n s i t y  below the th resho ld  fo r  the  tone 

b u r s t  presen ted  a lone .  They named t h i s  phenomenon 

'■ sen s i t iz a t io n 4' .  Unfortunately  i t  i s  not poss ib le  to  

c o r r e l a t e  the s e n s i t i z a t i o n  phase with the phase of BM 

movement in the data  of Deatherage and Henderson.

Zwicker (197.7a, b) at tempted to  i n f e r  the r e l a t i o n  

between b a s i l a r  membrane movement and e x c i t a t io n  of. audi to ry  

nerve f i b e r s  in a psychoacoustic  experiment.  He used a 

probe tone of shor t  dura t ion  to  t e s t  the masking e f f e c t  of a 

low frequency tone on. t h i s  probe tone ,  as the probe tone was 

moved to  d i f f e r e n t  phases of the low frequency tone. 

Zwicker found very c o n s i s te n t  r e s u l t s  in these  experiments .  

The maximum suppress ion ,  o r  masking, of the probe tone 

occurred during  the r a r e f a c t io n  phase of the  low frequency 

tone ,  and minimum masking occurred during condensation.  

However, fo r  in te n se  low frequency to n e s ,  a second maximum 

of masking a l so  occurred during  the condensation phase 

( f ig u re  J . M ) .

In order to  b e t t e r  d i s t in g u i s h  what funct ion  of the 

sound s timulus provided these  c h a r a c t e r i s t i c s ,  Zwicker 

( 1977b) used s p e c ia l ly  shaped low frequency maskers with 

d is t in g u is h a b le ,  d e r i v a t iv e s .  These s tu d ie s  led  Zwicker to  

severa l  i n t e r e s t i n g  conclus ions .  He found i t  poss ib le  to 

c o r r e l a t e  the  shape of the masking per iod  p a t t e r n s  to  the 

b a s i l a r  membrane movement by using D a l lo s '  (1970) hypothesis
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Figure 1.14 Masking-periad p a t t e r n s .  P lo t t e d  i s  the  
lev e l  of probe tone above th re s h o ld  needed to  overcome 
the  masking, e f f e c t  of a low frequency s in u s o id .  
Observe th e  appearance of 2 masking peaks per  cyc le  of  
the s in u so id  fo r  high i n t e n s i t y  maskers.  From Zwicker 
1977b.
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t h a t  the s ize  of  the  he l ico t rem a  in f luences  the behavior of 

the BM a t  low f requenc ies .  This c o r r e l a t i o n  in d ic a ted  th a t  

masking occurred as the b a s i l a r  membrane was d isp laced  

towards SV and ST* the  l a rg e r  of the masking peaks being 

found when the BM was d isp laced  towards ST. S e n s i t i z a t io n  

was a l s o  observed by Zwicker.

All the  experiments desc r ibed  in  t h i s  chapter  were 

designed to  c a s t  l i g h t  on the  s o u n d - to -n e u ra l - a c t iv i t y  

r e l a t i o n s h i p .  . The i n t r a c e l l u l a r  s tu d ie s  must be considered 

the most d i r e c t  measure of t h i s  r e l a t i o n ,  the psychoacoustic 

the  most i n d i r e c t .  Our experiments ,  involv ing  cochlear  

p o t e n t i a l s  and nerve a c t i v i t y  l i e  somewhere in between in 

d i r e c tn e s s  of approach.

The experiments reviewed above do not give a c l e a r  

in d ic a t io n  as to  the phase of BM movement where f i r i n g  takes 

p la ce .  The experiments d esc r ib ed  in Chapter 3 c a s t  some 

l i g h t  on t h i s  i s s u e .  Also, they revea l  a very d i f f e r e n t  

p a t t e r n  of response between low frequencies  p resen ted  alone 

and the responses for  low f requencies  p resen ted  with a tone 

a t  the c h a r a c t e r i s t i c  frequency.



56

CHAPTER 2 

METHODS OF RESEARCH

Most of the  techniques used in the experiments

descr ibed  in Chapter 3 a re  ro u t in e ly  employed in our 

lab o ra to ry .  In a t y p ic a l  experiment the p rep a ra t io n  and

surgery take 2 to  3 hours.  Data c o l l e c t i o n  i s  conducted for 

about J 0 hours a f t e r  t h a t .

2.1 Animal p repa ra t ion

Choice o f  animal.  Several  reasons  led us t o  choose the 

c h in c h i l l a  as  the  main research  s u b je c t .  Most of the

tech n ic a l  d i f f i c u l t i e s  in recording from s in g le  audi tory

f ib e r s  have been worked out fo r  t h i s  animal in our 

labo ra to ry  (Harr is  J977). Another reason fo r  the choice is

t h a t  the c h in c h i l l a  i s  f ree  of middle ear  i n f e c t io n s ,  a

common d isease  in guinea p ig s ,  and t r a i n a b l e  in 

psychoacoustic  experiments ( to  c o r r e l a t e  behaviora l  s tu d ie s  

with phys io lo g ica l  ones) .  Also,. r e l a t i v e l y  extensive  

experimental da ta  are  now a v a i la b le  on the au d i to ry  system 

of these  animals.

Surg ica l  procedures .  Surgery i s  performed to  . i n s e r t

cochlear  e l e c t ro d e s ,  u su a l ly  a round window e le c t ro d e ,  

prepare fo r  i n s e r t io n  of a s in g le  f i b e r  recording 

m icrop ipe t te  and prepare  the  animal f o r  I n s t a l l i n g  a closed 

sound d e l iv e ry  system.
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The c h i n c h i l l a s  are  ane s th e t ized  with i n t r a p e r i to n e a l  

in j e c t io n  of sodium p en to b a rb i ta l  (Nembutal). The i n i t i a l  

dose of 70 mg/kg provides a deep a n e s th e s ia ,  l a s t i n g  for  

about 2 hours.  The dose used i s  such t h a t  the animal is  

t o t a l l y  re laxed ,  and b rea thes  on h i s  own. The subsequent 

doses of a n e s th e t i c  are  given to  maintain the leve l  of 

a n e s th e s ia ,  u su a l ly  15 mg/kg every 2 hours.  Subcutaneous 

e lec t ro d es  are.  inserted,  across  the ches t  of  the animal. The 

s igna l  from these  e lec t ro d es  i s  am plif ied  and connected to 

an o sc i l lo scope  and a loudspeaker.  Heart ,  r e s p i r a t i o n  and 

muscle a c t i v i t y  are thus monitored and may be used to  

es t im ate  the degree of an e s th e s ia  of the animal.

2.2  Eighth nerve approach (H arr is  1977).

Tracheostomy i s  performedI the animal^s head i s  f ixed 

in  a ho lde r ,  and a f l a p  of 2 by 4 cm of skin i s  removed from 

the back of the head, a t  the lev e l  of the lambdold su tu re .  

The upper p a r t  of t h e . l e f t  pinna and c a r t i l a g e  are cut away 

from the b u l l a ,  g iv ing  access  to  the bony ex te rn a l  meatus. 

An opening i s  made in the ear  canal v e n t r a l l y  to  the bony 

ex te rna l  meatus opening, where the  tube of t h e  earphone for 

d e l iv e ry  o f  low frequency s t im u l i  i s  to  be in s e r t e d .  The 

dorsal-  muscles th a t  a t ta c h  to  the  cranium are  loosened from 

i t  in order t o  get  access to  the p o s t e r i o r  p a r t  of the 

cranium. The supra o c c i p i t a l  bone i s  p a r t i a l l y  removed in 

order  to  expose the p o s t e r i o r  fo ssa ,  and make p o ss ib le  the 

in s e r t io n  of p ip e t t e  e le c t ro d e s  in to  the 8th nerve. A hole
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of 2 square m i l l im e te rs  i s  then opened on the p o s te ro v en t ra l  

compartment of  the b u l l a .  A t e f l o n - in s u l a t e d  s i l v e r  wire 

with i t s  t i p  free, from the in s u la t io n  and f l a t t e n e d ,  i s  

c a r e fu l ly  contac ted  with the do rsa l  edge of the round window 

membrane. The wire i s  then glued to  the b u l la  with dental  

cement to  hold i t  in p lace .  The mouthpiece of the 

headholder serves as the re fe rence  e l e c t ro d e .  The animal is  

put in a sound in su la te d  booth. The sound d e l iv e ry  system, 

the subcutaneous e lec t ro d e s  and a r e c t a l  thermometer 

toge the r  with a hea t ing  pad are  i n s t a l l e d .  A small hole is  

made on the supe r io r  compartment of the b u l la  i n  order  to  

provide p ressure  e q u a l iz a t io n  in the middle e a r ,  and a long 

th in  po ly e th i le n e  tube i s  cemented in to  the hole to  assure 

normal acous t ic  impedance of the  b u l l a .  The sound system i s  

c a l ib r a t e d  fo r  each, animal,  so th a t  the sound pressure  leve l  

being de l ive red  can be r e l a t e d  to  the s tandard 20 

micropascal (0 dB SPL). The whole nerve ac t io n  p o te n t i a l  

th resho lds  due to  tone b u r s t s  f o r  f requencies  between 500

and 20000 Hz are  ob ta ined .  These th resho lds  a re  used as a

re ference  for  monitoring the s t a t e  of the cochlea during the 

experiment.  An increase  in th resho ld  of 10 dB or more i s  

considered, t o  Ind ica te  a . d e t e r io r a t i o n  of coch lear  

cond i t ion .

When these  p rep a ra t io n s  are f in i s h e d ,  the dura i s  

opened and the cerebellum on the l e f t  s ide  r e t r a c te d

medially  about 2 mm to  expose the  opening of the  in t e rn a l

meatus and the emerging e ighth  nerve .  A p ip e t t e  e lec t rode
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f i l l e d  with 2 M NaCl i s  put in place on a hydrau l ic  d r iv e r  

th a t  i s  c o n t ro l l a b le  from the  ou ts ide  of the booth. The 

e lec t rode  i s  then aimed a t  the do rsa l  p a r t  of the exposed 

nerve. The p rep ara t io n  i s  now ready for  s in g le  audi tory  

nerve f i b e r  reco rd ing .

2.3 D i f f e r e n t i a l  e le c t ro d e s  (Tasaki ,  Davis and Legouix, 

1952).

Recording with d i f f e r e n t i a l -  e l e c t ro d e s  r eq u i re s  a 

d i f f e r e n t  su rg ic a l  technique .  The animal i s  anes the t ized  

and tracheostomy i s  performed. The v en t ra l  p a r t  of the 

b u l la  i s  exposed by l i g a t i n g  and c u t t i n g  the ex te rna l  

jugu la r  ve in ,  and removing s a l iv a r y  glands and musculature. 

The jaw i s  broken to  expose the l a t e r a l  wall of the b u l l a ,  

and the ex te rna l  c a r t i lag e n o u s  meatus i s  cut so t h a t  the 

sound d e l iv e ry  system can be I n s t a l l e d .  The v e n t ra l  p a r t  of 

the b u l la  i s  opened to  expose the  cochlea .  Two small holes 

a re  c a r e f u l ly  d r i l l e d ,  one over sca la  tympani, the o ther  

over sca la  v e s t i b u l i  of the basa l  tu r n ,  and a g la s s  

in su la te d  tungsten e lec t ro d e  i s  in s e r t a d  in to  each ho le ,  the 

g la s s  a l so  serv ing  as a plug fo r  the ho les  to  prevent 

perilymph from leaking o u t .  The b u l la  i s  then c losed  with 

den ta l  cement, and a th in  po ly e th i len e  tube serv ing  as a 

p ressure  eq u a l iz e r  i s  glued i n  p lace .



2.4 Equipment, c a l i b r a t i o n  and recording  techniques .

Sound system. Sinusoids were genera ted by a d i g i t a l  

frequency sy n th e s iz e r  (Rockland 5100). The harmonic 

d i s t o r t i o n  of the  s igna l  was more than 70 dB below the 

fundamental. Click and noise gene ra to rs  were a l so  

a v a i l a b le .  S p e c ia l ly  shaped s t i m u l i ,  such as tone b u rs ts  

with cosine envelopes,  and Gaussian impulses were generated 

with a D ig i ta l  Equipment Corporation PDPII/34 computer 

through a d i g i t a l - t o - a n a l o g  conver te r  (Analogic AN5800 

s e r i e s ) .  A sp e c ia l  c i r c u i t  was used to  compensate fo r  the 

inheren t  n o n l in e a r i ty  t h a t  e x i s t s  between the d r iv in g  

voltage and the  sound pressure  genera ted by a condenser 

microphone used as a sound source (Molnar et a l .  1969). 

This condenser d r i v e r  was used for d e l iv e ry  of  s ig n a ls  of 

frequency higher  than 300 Hz. I t  was connected to  the bony 

ex te rna l  aud i to ry  meatus through a tube ,  to  provide a closed 

system. For lower. f requenc ies  a magnetic earphone 

(Telephonies TDH 39) was used, connected to  the ea r  by a 

s t e e l  tube ,  7 mm in d iam eter ,  through the hole th a t  was 

d r i l l e d  on the wall of the bony ex te rna l  meatus. The 

earphone i s  capable of  d e l iv e r in g  higher  sound p ressure  

l e v e l s  a t  low frequencies  than the  condenser d r i v e r ,  with 

s i g n i f i c a n t l y  lower harmonic d i s t o r t i o n .  Concentric with 

the tube d e l iv e r in g  sound from the  condenser d r iv e r  was 

another tube t h a t  was a t tached  to  a microphone (B&K 4134), 

used to  monitor the sound pressure  leve l  being d e l iv e red .  

The maximum sound pressure  leve l  t h a t  could be obtained at 

each frequency was measured over the range of J00 to  20000
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Hz* Any sound p ressu re  level  could then be d e l iv e red  by 

proper a t t e n u a t io n  of  the st imulus source.

Signals  recorded*. The b i o e l e c t r i c a l  s ig n a ls  of i n t e r e s t  are 

the p o te n t i a l  of the round window e le c t ro d e ,  of the 

d i f f e r e n t i a l  e le c t ro d e s  and of the s in g le  f i b e r  e le c t ro d e .

The re ference  e lec t ro d e  was the mouth-bar of the headholder.

The s igna l  from the round window e lec t ro d e  i s  am plif ied  with 

a low level  p rea m p l i f ie r  (gain 1000) loca ted  in s ide  the

sound proofed booth, having a passband of .8 Hz to  40 kHz

then led to  the  o u ts ide  o sc i l lo sc o p e  and averager .  Two such 

a m p l i f ie r s  are  used, one for  each e l e c t ro d e ,  when recording 

with d i f f e r e n t i a l  e l e c t ro d e s .  The s igna l  from the 

m icrop ipe t te  e lec t ro d e  i s  f i r s t  passed through a 

p ream p l i f ie r  with a high impedance, capacitance compensated 

input (WPI M701), s ince the  Impedance of the  m icropipette  

e lec t ro d e  is  of the order  of J 00 Megohms. A fter  t h a t ,  the 

s igna l  takes  a conventional ro u te ,  through a low level  

p ream p l i f ie r  to  the  o sc i l lo sc o p e .  The occurrence of a 

s in g le  f ib e r  ac t ion  p o te n t i a l  i s  d e tec ted  as follows* The 

sweep t r i g g e r  leve l  o f  the o sc i l lo scope  i s  ad jus ted  so th a t  

a c t io n  p o t e n t i a l s  ( sp ikes)  t r i g g e r  a sweep. The t r i g g e r  

s igna l  from the scope i s  used to  genera te  .1 ms pu lses  th a t  

are de tec ted  and s to red  by a PDP—12A computer, to  cons truc t  

PST his tograms.

For record ing  of s ig n a ls  from d i f f e r e n t i a l  and round 

window e lec t ro d es  an averager  (Fabri-Tek instrument computer
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model 1072) i s  used.  This averager can be connected to  the 

PDP12 computer through a d i g i t a l  i n t e r f a c e ,  so  th a t  the 

computer can s to re  the da ta  on i t s  d i g i t a l  tape fo r  o f f - l i n e  

a n a ly s i s .

The g r e a t e s t  d i f f i c u l t y  in the experiments was 

maintaining c o n tac t  with a f i b e r  f o r  a time enough to  obtain 

complete d a t a .  This requ ired  up to  15 minutes of co n tac t .  

Many f ib e r s  were contacted  fo r  longer, d u ra t io n s ,  but most of 

them faded away in le s s  t ime.

Histograms. A convenient way of p resen t ing  s in g le  f i b e r  

da ta  i s  to  cons truc t  h is tograms, where the  absc issa  

r ep re sen ts  time and- the o rd in a te  shows the number of spikes 

de tec ted  within  each time i n t e r v a l .  The u se fu lness  of 

histograms l i e s  in . the f a c t  t h a t  responses of audi to ry  

f i b e r s  are random s p ik e s ,  and a s ing le  sample of the  spike 

a c t i v i t y  due to  a tone b u r s t ,  fo r  example, does not give a 

c o n s is te n t  p i c t u r e ,  from sample to  sample. One can only 

t a lk  about the p r o b a b i l i t y  of a spike occurr ing  in  a c e r t a in  

i n t e rv a l  of t ime,  given a c e r t a in  s t im u lus .  The histogram 

i s  an ex c e l l e n t  in d ic a to r  of  the  p r o b a b i l i ty  of f i r i n g ,  and 

the g r e a t e r  the  number of samples c o l l e c te d ,  the c l e a r e r  the 

pa t te rn ,  of f i r i n g  p r o b a b i l i t y  becomes (Goldstein and Kiang, 

1958).

Averaging. The averaging technique i s  a very powerful
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too l  in recording f a i n t  b i o e l e c t r i c  s ig n a l s ,  and in audi tory  

physiology some spec ia l  methods are worth mentioning. The 

response to  a s t imulus A+B can d i f f e r  from the  sum of the 

responses to  A and B presen ted  in d iv id u a l ly .  To analyze the 

in f luence  of B upon A, an o f ten  used technique i s  to  present  

A*B, then su b t r a c t  from t h a t  response the  response t o  B 

presen ted  a lone .  This can render  the response t o  A v i s i b l e ,  

even when B e l i c i t s  a much l a rg e r  response than A. This 

technique i s  used in the  experiments in chapter  3 t o  render 

v i s i b l e  the response to  a tone hu rs t  inf luenced by a low 

frequency s t im ulus .  F i r s t  both the  tone bu rs t  and the LF

stimulus are  p resen ted  to g e th e r ,  then the LF stimulus i s

p resen ted  alone and the two responses sub t rac ted  from each 

o th e r .

2 .5  Special  s t im u l i .

In the experiments descr ibed  in Chapter 3 ,  the s t im uli  

used were of  somewhat unusual kind. They were syn the t ized  

by a d i g i t a l  computer us ing  a n a ly t i c a l  formulae fo r  the 

waveform.

Low frequency s t im u l i .  The experiments used low f requencies  

in an attempt to  J,b ia s"  the b a s i l a r  membrane, and a l s o  to  

f ind  the phase of f i r i n g  of nerve f i b e r s  due to  these

s t im ul i  a lone .  These LF s t im u l i  were of two types ,

continuous s inuso ids  and Gaussian impulses.
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The function  y * ex p ( - t )2 i s  here c a l l e d  a Gaussian 

impulse, due to  i t s  s i m i l a r i t y  to  the Gaussian curve in 

s t a t i s t i c s .  This function  never becomes zero ,  but even for 

t=3, the value of the function  i s  only .G0012, or 78 dB 

below the value of the peak, a t  t=0. The Gaussian impulses 

were generated from t h i s  formula. The d ig i t a l - t o - a n a l o g  

conver te r  has a 14 b i t  word leng th .  At the peak of the 

Gaussian curve a l l  13 b i t s  were se t  (1 b i t  f o r  s ig n ) .  At 

t= -3  and t*=3 only  one b i t  i s  s e t .  Thus the t r a n s i t i o n  from 

the  end of the. s igna l  generated by the computer and the 

following s i l e n c e  i s  as smooth as p o s s ib le .  In the 

experiments descr ibed  in Chapter 4, the Gaussian function 

above, with the  extremes a t  x=-3 and x=3 was used scaled in 

two ways,-one spanning over 10 m i l l i seco n d s ,  with peak a t  5 

ms, the other  spanning 20 ms, having i t s  peak a t  10 ms.

Figure 3 .3  shows the  vo l tage  fed to  the earphone and 

the r e s u l t i n g  sound pressure  in f ro n t  of the eardrum of the 

c h i n c h i l l a .  Note th a t  the sound p ressure  th a t  a r i s e s  from 

the earphone as a r e s u l t  of us ing  a Gaussian impulse as 

d r iv in g  voltage i s  not exac t ly  a r e p l i c a  of th a t  vo l tage ,  

al though the main q u a l i t i e s  of the impulse remain the. same. 

I t  was f e l t  t h a t  a t tempting to  genera te  a compensated wave 

fo r  ob ta in ing  a sound f i e l d  with p e r f e c t  Gaussian 

c h a r a c t e r i s t i c  was not worth the  e f f o r t ,  s ince the r e s u l t s  

obta ined with th e  Gaussian voltage were s a t i s f a c t o r y ,  and a t  

any r a t e ,  the cochlear  mlcrophonic was used to  i n f e r  b a s i l a r  

membrane movement.
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The sound p ressure  level  due to  the Gaussian Impulses 

cannot be measured by the conventional method of passing the 

s inuso ida l  s ig n a l  from the monitoring microphone through a 

narrow band f i l t e r  and then measure the level,  of the 

component a t  the s p e c i f ie d  frequency. In the r e s u l t s  

p resen ted  in Chapter 3, the SPL of Gaussian impulses is  

es t imated  by comparing the peak of the  p ressu re  produced by 

the Gaussian impulse with the peak of the sound pressure  

produced by a s inuso id  of  100 Hz.

Tone b u r s t s  of very short  d u ra t ion  are used as "probes" 

on d i f f e r e n t  phases of the LF s t i m u l i .  These tone b u rs ts  

have to  be shor t  without excessive sp e c t r a l  spread.  The 

reason fo r  using shor t  tone b u r s t s  i s  to  be able  to  conclude 

th a t  the response th a t  they e l i c i t  i s  genera ted w ith in  a 

known short  period of t ime. I t  i s  demonstrated in .section

3.4 th a t  even 4 cyc les  of a s ine  wave with a cosine 

envelope,

Vlt.)* A(l-cos(2  tt t / d u r ) ) s i n ( 2  it Ft.), 0<t<dur,F=4/dur , 

where F i s  the  frequency of the sine wave, and dur i s  the 

dura t ion  of the b u r s t ,  can be used as a s t imulus with the 

c a p a b i l i ty  of  evoking whole nerve ac t io n  p o te n t i a l s  

comparable to  those e l i c i t e d  by longer tone b u r s t s .
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Chapter 3 

DYNAMICS OF COCHLEAR HAIR CELLS

3 . 1 In t ro d u c t io n .

This chap te r  d esc r ib es  experiments designed to  gain a 

b e t t e r  understanding of the - r e l a t io n s h i p  between b a s i l a r  

membrane movement and a u d i to ry  nerve a c t i v i t y .  Gross 

e l e c t r i c a l  a c t i v i t y  from the coch lea ,  as well as responses 

from s in g le  au d i to ry  nerve f i b e r s  were recorded fo r  t h i s  

purpose.

The r e l a t i o n  between BM movement and p o t e n t i a l s  a t  the 

round window i s  the su b je c t  of  s ec t io n  3 .2 .  Sect ion 3.3 i s  

a repor t  on whole-nerve a c t io n  p o t e n t i a l s  e l i c i t e d  and 

inf luenced by low frequency tones .  These LF tones  were used 

to  " b ia s "  the  b a s i l a r  membrane in order  to  f ind  the

inf luence  of such b ia s  on the AP responses to  tone b u r s t s .  

Section 3.4 d e s c r ib e s  experiments on s in g le  f i b e r  responses? 

these experiments were done, to  r e l a t e  s in g le  f i b e r  a c t i v i t y  

to  b a s i l a r  membrane movement. As b e fo re ,  the technique used 

was t h a t  of p re se n t in g  tones to g e th e r  with low frequency 

■‘•biasing" tones .

3.2 Round window e l e c t r i c a l  a c t i v i t y  and b a s i l a r

membrane movement.

I t  was o f  primary importance in t h i s  study t o  be able 

to assess  the BM movement, a t  - l e a s t  fo r  low frequency
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s t im u l i .  Unfor tuna te ly ,  w ith in  the confines  of the present  

work, t h i s  movement could only be eva luated  i n d i r e c t l y .  The 

cochlear  microphonic as measured with d i f f e r e n t i a l  

e le c t ro d e s  in SV and ST has been shown to  be well c o r r e la te d  

with the BM movement (Chapter I ) .  D i f f e r e n t i a l  e lec t ro d es  

are  d i f f i c u l t  to  i n s e r t  in the  same p re p a ra t io n ,  toge ther  

with p ip e t t e  e lec t ro d es  for  s in g le  u n i t  reco rd ings ,  because 

these  experiments req u i re  v e n t ra l  and d o rsa l  approaches, 

r e sp e c t iv e ly .  Also, d i f f e r e n t i a l  e le c t ro d e s  are  invasive  to  

the  cochlea .  Therefore in  t h i s  s ec t io n  the f e a s i b i l i t y  of 

using a round window e lec t rode  to  as sess  the BM movement is  

in v e s t ig a te d .  The ques t ion  then i s  how well does the 

a c t i v i t y  recorded by a round window e lec t ro d e  c o r r e l a t e  with 

t h a t  measured with d i f f e r e n t i a l  e l e c t ro d e s .  I f  . th is  

c o r r e l a t i o n  i s  good, then the  RW a c t i v i t y  may be used to 

es t im ate  BM movement.

A. Low frequency s in u so id s .

The e l e c t r i c a l  a c t i v i t y  a t  the RW due to  a s in u so id a l  

tone i s  a d i s t o r t e d  s in u so id ,  a s  descr ibed  in Chapter I .  I t  

i s  generated by a supe rpos i t ion  of var ious  e l e c t r i c a l  

responses ,  among them the  cochlear  microphonic. For low 

i n t e n s i t i e s ,  the CM i t s e l f  i s  r e l a t i v e l y  f ree  from 

d i s t o r t i o n  when recorded with d i f f e r e n t i a l  e l e c t ro d e s .  The 

d i s t o r t i o n  seen a t  the round window i s  caused by o the r  

sou rces ,  mainly n eu ra l .  I t  i s  d i f f i c u l t  to  e l e c t r i c a l l y  

f i l t e r  neural responses from co c h le a r  microphonic responses
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without in troducing  an unknown phase s h i f t  in the CM. For 

example an AP can appear once each cy c le ,  co n t r ib u t in g  to 

the fundamental component in a phase d i f f e r e n t  from the CM 

phase. As i n t e n s i t y  i s  inc reased  the CM grows f a s t e r  than 

the neura l  components. For high sound i n t e n s i t i e s  the CM is  

the l a rg e s t  component of the s ig n a l .  At these  l e v e l s  (over 

80 dB SPL) the  c o n t r ib u t io n  of  the neural  components to  the 

RW waveform i s  sm all .  The phase of  the CM p a r t  of the round 

window a c t i v i t y  can th e re fo re  be assessed  from the t r a c e s  a t  

high l e v e l s .  At 80 dB SPL the p o s i t iv e  peak i s  broader than 

the negative one. The p o s i t iv e  and negative  peaks occur a t  

eaual i n t e r v a l s  from one-another .  Using the p o s i t iv e  peak 

as a phase re fe rence  gives r e s u l t s  th a t  a re  comparable to  

r e s u l t s  from DIF e lec t ro d e  reco rd ings .  Figure 3.1 shows 

various waveforms of RW a c t i v i t y  fo r  d i f f e r e n t  i n t e n s i t i e s  

of the sound.

The next i s su e  I s  t o  c o r r e l a t e  the phase of the 

waveform with the  one ob ta ined  fo r  d i f f e r e n t i a l  e l e c t ro d e s .  

One c h in c h i l l a  was prepared with d i f f e r e n t i a l  e lec t ro d es  in 

the f i r s t  c o c h le a r  tu rn .  A te f lo n  coated s i l v e r  wire was 

placed a t  the rim of the round window, by the methods 

descr ibed  in Chapter 2. Low frequency s inuso ids  were then 

presen ted  and the phase of .the waveform a t  each e lec t rode  

was measured r e l a t i v e  to  the phase of the voltage d r iv ing  

the  earphone. The r e s u l t s  are shown in f ig u re  3 .2 .  Note 

the 180 degrees d i f f e r e n c e  between the DIF and the  RW 

e le c t ro d e s .  I t  i s  remembered th a t  the DIF by d e f i n i t i o n  is



69

6 0

7 0
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2 5  m s

Figure 3 .1 .  Round window e l e c t r i c a l  a c t i v i t y  due t o  a 
J00 Hz s in u s o id a l  .continuous s t im ulus  of 60,  70 and 80 
db SPL. Arrows In d ic a te  the  p a r t  o f  the  wave used t o  ~ 
i n f e r  the  phase  of. th e  CM. D. I n te r r e d  BM motion. 
Bar » 60 m ic ro v o l t s .
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the a c t i v i t y  SV-ST* the round window a c t i v i t y  i s  most l ike  

ST, the re fo re  the 180 degree d i f f e r e n c e .  From f igu re  3.2 

one sees th a t  the phase of the round window a c t i v i t y  i s  very 

near th a t  of the ST a c t i v i t y  fo r  f requencies  between 50 and 

200 Hz.

The (SV-ST) s ig n a l ,  which i s  assumed to  be the bes t  

co r r e la te  of BM movement, i s  c lose  t o  180 degrees apar t  from 

the ST phase fo r  the same f requenc ies .

The RW waveform phase, as found by the method described 

was th e re fo re  used as a c o r r e l a t e  of BM movement. The 

r e l a t i o n  in f e r r e d  i s  t h a t  dep ic ted  in f igu re  3 . ID, namely 

th a t  the BM, a t  l e a s t  in the f i r s t  t u r n ,  i s  d e f le c te d  

towards scala  v e s t i b u l i  when the  p o s i t i v e  peak occurs on the 

RW waveform. The in te r -an im a l  v a r i a b i l i t y  of the phase a t  

100 Hz, as r e l a t e d  to  the  voltage of the  st imulus was 

u su a l ly  with in  40 degrees of th e .v a lu e  in f ig u re  3 .1 .  This 

phase, measured fo r  each, animal, was used as a c o r r e l a t e  of 

the BM movement.

In the experiments descr ibed  h e r e a f t e r  we used 100 Hz 

as the low frequency . s t im ulus .  This i s  a somewhat 

unfortuna te  choice in the case of the c h in c h i l l a  because of 

the  s teep  phase change th a t  takes  place in the  CM around 100 

Hz (Dallos 1970a), and probably con t r ibu ted  to  the  observed 

v a r i a b i l i t y ,  of phase from animal to  animal. The choice of 

100 Hz was mainly done because i t  s t im u la te s  f i b e r s  of high 

c h a r a c t e r i s t i c  frequency with reasonable i n t e n s i t y  le v e l s  of
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(DIF)

RW
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KHZ
Figure 3 .2  Phases of co ch lea r  e l e c t r i c a l  a c t i v i t y  to
low frequency s in u s o id s .  A. ST e le c t ro d e  I B. RW
electrode*  C. SV-ST (DIF). D. RW+J80 deg rees  to
compare with DIF..  Common reference* Voltage t o  e a r 
phone (a78).
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sound, and s t i l l  i s  many octaves below the CF of the f ib e r s  

of i n t e r e s t .

B. Low frequency Gaussian impulses.

The main reason for using Gaussian shaped impulses i s  

the f a c t  t h a t  one can have la rge  time i n t e r v a l s  beween 

p u lse s ,  so t h a t  the  e f f e c t  of one impulse on the cochlear  

a c t i v i t y  can e a s i l y  be assigned to  t h a t  p a r t i c u l a r  pu lse .  

This i s  in c o n t r a s t  with the..use of continuous s in u s o id a l s ,  

where adap ta t ion  and o the r  i n t e g r a t i v e  e f f e c t s  make harder 

the i n t e r p r e t a t i o n  of the r e s u l t s .  Other r e sea rch e rs  have 

used Gaussian shaped impulses because t h e i r  d e r iv a t iv e s  are  

very d i f f e r e n t  from one ano ther ,  s im p lify ing  an a ly s is  of 

r e s u l t s  (Zwicker 1977). This q u a l i ty  of the impulses was 

not explored here .

The e l e c t r i c a l  response ,  measured a t  the round window, 

to. such s t im u l i  i s  dep ic ted  in f ig u re  3 .3 ,  fo r  a

condensation impulse, and in f ig u re  3.4 fo r  a r a r e f a c t io n

impulse of 10 ms (see Chapter 2 fo r  explanat ion  of

pa ram ete rs ) .

The RW t r a c e  appears to  be a su p e rp o s i t io n  of neural 

and CM a c t i v i t y .  This can be seen by comparing i t  t o  the 

t r a c e  marked ANOXIC in f ig u re s  3 .3  and 3 .4 .  This t r a c e  was 

obtained a t  the end of the  experiment by.clamping the

trachea  and- record ing  the RW a c t i v i t y  a f t e r  10 minutes.  The 

approximately d e r iv a t iv e  r e l a t io n s h ip  between the  sound and
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C - D
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Figure  3 . 3  Round .window e l e c t r i c a l  a c t i v i t y  due 
to  a Gaussian im pu lse .  A. Voltage t o  earphone 
(condensation  im pu lse ) !  B. Sound p ressu re  in  .front of  
tympanic membrane! 10 dB h ig h e r  sound le v e l  was used! 
C. RW response!  0 .  Same as C« f o r  anoxic animal! E. 
D iffe rence  C-D. Bar* 200 m i c r o v o l t s . (A 7 8 ) . .
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C - D

40 8 12 16 20 m s

Figure  3*4 Round window e l e c t r i c a l  a c t i v i t y  due t o  a 
Gaussian impulse.  A. Voltage t o  earphone* B. Sound 
p re s s u re  in  f ro n t  of tympanic membrane ( r a r e f a c t i o n  
impulse)I  C. RW response* 0 .  Same as  C, f o r  anoxic 
animal,  10 dB h ighe r  sound le v e l  was used* E. 
D if fe rence  C-D. Bar*200 m ic rovo l ts  (A78).
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anoxic RW a c t i v i t y  i s  v a l id  fo r  the f i r s t  8 ms or  sol a f t e r  

th a t  a second and . th i rd  maxima occur,  a t  approximately 10 

and 13 ms. I t  i s  not known whether t h i s  o s c i l l a t i o n  of the 

RW CM i s  a r e f l e c t i o n  of the BM movement, but as shown in 

subsequent s e c t io n s  on AP and s in g le  u n i t  s t u d i e s ,  these 

secondary peaks produce masking e f f e c t s  s im i la r  to  the 

e f f e c t s  produced by the f i r s t  and second maxima of the RW 

CM. In order  to  g e t  records  from the  RW, such as in f igu re  

3.3D and 3.4D i t  i s  necessary t o  work with an anoxic animal. 

Anoxia e f f e c t i v e l y  e l im in a te s  neural  a c t i v i t y ,  leaving  the 

cochlear  microphonic component unchanged in form, although 

smaller  than in  the normal animal.

C. Tone b u r s t s  superimposed on low frequency tones .

In the subsequent experiments shor t  tone b u r s t s  are 

d e l iv e red  to the ea r ,  to g e th e r  with a low frequency tone. 

The goal i s  t o  p lace  the tone bu rs t  in time such th a t  i t  i s  

d e l iv e red  to  the  cochlea when the low frequency stimulus 

ILF) i s  d r iv in g  the b a s i l a r  membrane in a c e r t a in  d i r e c t io n .  

Here the round window CM i s  used as an i n d i r e c t  in d ic a to r  of 

BM movement.

A tone b u r s t  of shor t  du ra t ion  w i l l  e l i c i t  a round 

window response as depic ted  in f ig u re  3 .5 .  This response 

c o n s i s t s  c l e a r ly  of  two components, the CM and the  AP. Let 

us consider  the  CM. As i n t e n s i t y  of the sound in c rease s .
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Figure  3 .5  Round window responses  t o  a tone 
b u r s t  of  4 kHz* I ins d u r a t io n .  Top t r a c e s  Voltage to  
earphone. A. t o  E* Round window re sp o n se .  
27 ,37 .47 ,57 ,67  dB SPLl G. 67 dB SPL, but every  o th e r  
b u r s t  of. o p p o s i te  p o l a r i t y  t o  cancel  CM. Bar » 50 mi
c r o v o l t s  (A78).
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the CM does not change in i t s  time of occurrence* a l s o ,  for  

d i f f e r e n t  f requenc ies ,  the  time of occurrence of the CM 

remains unchanged. Thus, cochlear  t r a v e l  time i s  small 

s ince the RW CM i s  probably mostly generated by basal 

s t r u c t u r e s .  The delay seen from the onse t  of the  stimulus 

vo l tage  i s  due to  the propagation time from the earphone 

(Distance c i r c a  4 cm, g iv ing  .13 ms d e la y ) ,  through the 

middle ear  and to  the p lace of CM g en e ra t io n ,  a t o t a l  of 

c i r c a  .17 ms.

A tone b u r s t  can be presen ted  simultaneously  with a LF 

s t im ulus .  F igure 3.6 shows the  RW response to  two s t im u l i  

presen ted  to g e th e r ,  the tone b u r s t s  occurr ing  a t  d i f f e r e n t  

phases of the LF per iod .  Using our assumptions on the

c o r r e l a t io n  between BM movement and RW a c t i v i t y ,  we conclude 

th a t  the BM i s  d isp laced  approximately towards ST when for 

example the tone b u rs t  in f ig u re  3.6D i s  d e l iv e re d ,  and 

towards SV in f ig u re  3.6E. This we be l ieve  i s  t rue  fo r  the 

BM movement in  the base of the cochlea .  The quest ion  i s  

whether t h i s  r e l a t i o n s h ip  holds t ru e  as  the st imulus t r a v e l s  

on the b a s i l a r  membrane, to  the loca t ion  where the tone 

b u rs t  e l i c i t s  the ac t io n  p o t e n t i a l .  This i s  important in 

the context of  the next s e c t io n ,  where we study the  masking 

of the AP due to  the tone b u r s t ,  brought about by the LF 

tone .

The p h a s e . r e l a t i o n  between the tone b u r s t  and the LF 

tone w i l l  hold i f  th e re  i s  no d isp e rs io n  on the b a s i l a r
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Figure 3 .6  Tone .burs t  p resen ted  with a Gaussian 
p u lse .  A. Voltage t o  earphone,, a condensat ion  im
p u lse !  B. Response t o  A alone? C. to  F> Response
to  A and a tone b u r s t  of 4 kHz I ms d u ra t io n  s t a r t i n g
a t  0 ,  2 .5 ,  5 .0  and. 7 .0  ms, r e l a t i v e  t o  the  s t a r t  of  
the to n eb u rs t  vo l tage  and to  the s t a r t  of  the  Gaussian 
impulse. Bar « 50 m ic rovo l ts  (A68).
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membrane i . e .  i f  s t im u l i  of d i f f e r e n t  f requencies  t r a v e l  

with the same v e l o c i ty .  Oallos and Cheatham showed in 1971 

th a t  the re  i s  no d isp e rs io n  in the coch lea ,  because the 

t r a v e l  time determined from phase of cochlear  microphonics 

seemed to  be cons tan t  fo r  a l l  f requencies  below the bes t  

frequency fo r  the  cochlear  tu rn  in  q u es t io n .  There i s  some 

controversy as to  t h i s  s ta tem en t ,  e s p e c i a l ly  fo r  the region 

of CF, but fo r  our purposes,  the e r r o r  in  neg lec t ing  

d isp e rs io n  i s  small* A worst—case example from s in g le  u n i t  

da ta  i l l u s t r a t e s  t h a t  d i sp e rs io n  i s  s u f f i c i e n t l y  small t o  be 

d is rega rded .  As pointed out in Chapter I , a f ig u re  such as 

l . i l  can be used to  c a lc u l a t e  the t r a v e l  t ime, or r a t h e r ,  

the t o t a l  de lay  th a t  occurs from the sound genera t ion  to  the 

spike d e te c t io n .  This time delay is  the slope of  the curves 

seen in f ig u re  l . l l .  As expected,  t h i s  slope i s  of the same 

magnitude, as the d i c k  la tency  of the f i b e r s .  This i s  t ru e  

because of the approximately nondispers ive  q u a l i t i e s  of the 

system. Figure l . l l  shows no p e c u l i a r i t i e s  as the  stimulus 

frequency approaches the CF of the f i b e r s .  For example, the 

curve fo r  the f i b e r  of CF*2.I kHz has a slope of 

approximately 2 .2  ms, which i s  comparable to  c l i c k  l a t e n c i e s  

for  f i b e r s  of  such CF. On the o the r  hand, f igu re  3 .7  shows 

a change in s lope to  occur as frequencies a re  scanned, 

in d ic a t in g  d i f f e r e n t  de lays  fo r  d i f f e r e n t  f requenc ies .  This 

change in s lope i s  the l a r g e s t  repor ted  in the  l i t e r a t u r e .  

Note th a t  a mere change in the phase of f i r i n g  of a f i b e r  

within the cycle of  the st imulus would only in troduce a
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Figure  3 .7  Phase of  f i r i n g  of . f ib e r s  t o  tone.s o f  d i f 
f e r e n t  f r e q u e n c ie s .  The .slope of  the. cu rves  i s  the  
delay  between the  s t im ulus  gen e ra t io n  and sp ik e  d e te c 
t i o n .  Therefore* a slope change in d i c a t e s  a d i f f e r 
ence in d e la y .  The observed changes in  s lope  could  be 
due to  d i f f e r e n t  conduction v e l o c i t i e s  f o r  d i f f e r e n t  
f requenc ies  along the  b a s i l a r  membrane* i . e .  
d i s p e r s io n .  From P f e i f f e r  and Molnar, 1970.
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s t e p ,  and not a change in slope in the curves .  Taking the 

curve for the f i b e r  of 4 .6  kHz as an example, the high 

frequency slope i s  1.2 ms, but the low frequency slope is  

only .6  ms. I f  t h i s  I s  due to d isp e rs io n  on the b a s i l a r  

membrane, we can conclude th a t  a 100 Hz st imulus a r r i v e s  to  

the CF lo ca t io n  1.2 ms -  .6 ms * .6  ms e a r l i e r  than a 4 .6 

kHz s t im ulus .  . .This  , t r a n s l a t e s  in to  a phase discrepancy 

(between tone b u r s t  and LF tone) of 22 degrees ,  between the 

phase observed a t  the round window and the ac tua l  phase 

r e l a t i o n  a t  the  CF lo c a t io n .

Another argument th a t  can be used to  conclude th a t  

d i sp e rs io n  i s  n e g l ig ib le  i s  the f a c t  t h a t  t h e  c l i c k  la tency 

of a 4 kHz f i b e r  I s  i n  the order  of 1.6 ms. At l e a s t  one 

m il l isecond  of  t h i s  time i s  due to  synap t ic  delay and neural 

conduction. The d isp e rs io n  th e r e f o r e ,  between what i s  

observed a t  the round window and what a c tu a l ly  occurs at the 

CF loca t ion  has an upper l im i t  of .6 ms.

From the observa t ions  in the  preceding experiments , we 

conclude th a t  a round window e lec t ro d e  can be used in l ieu  

of a sca la  tympani e lec t rode  to  i n f e r  .b a s i l a r  membrane 

motion, a t  l e a s t  for  the  low f requenc ies  considered .  

Fu r the r ,  by p lac ing  a tone burs t  in  a c e r t a in  phase of the 

response e l i c i t e d  by a LF tone ,  i t  i s  assumed th a t  the b u r s t  

w i l l  s tay  in t h a t  approximate phase r e l a t i o n  with the LF 

tone to  the CF lo c a t io n .
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3.3 Whole nerve ac t io n  p o te n t i a l s  modulated by low 

frequency s t i m u l i .

This sec t io n  d esc r ib es  experiments on the  in f luence  of 

low frequency (LF). s t im u l i  on whole nerve ac t io n  p o t e n t i a l s .  

These APs were evoked by shor t  high frequency tone b u rs ts  

p resen ted  to g e th e r  with LF s t i m u l i .  F i r s t  we look b r i e f l y  

a t  the  ac t ion  p o t e n t i a l s  evoked by the low frequency tones 

p resen ted  a lone .

A. Action p o t e n t i a l s  due to  LF tones .

A continuous s inusoid  having a frequency up to 

approximately 2000 Hz w i l l  in each cycle e l i c i t  a d i s c r e t e  

whole nerve ac t io n  p o te n t i a l  t h a t  can be recorded from the 

round window or with d i f f e r e n t i a l  e l e c t ro d e s .  These APs are 

r e a d i ly  apparent in the round window p o te n t i a l  for 

f requencies  under 300 Hz, s ince they appear as a d i s t o r t i o n  

in the. s inuso ida l  waveform. For f req u en c ie s  over 300 Hz, 

the  AP and the  CM are not e a s i ly  separa ted  and spec ia l  

methods such as AVE reco rd in g s ,  masking, or anoxia are 

needed to  d i s t i n g u i s h  the  AP from the CM. This se c t io n  i s  a 

r ep o r t  on the  ac t io n  p o t e n t i a l s  e l i c i t e d  by s inuso ids  

between 50 and 200 Hz and by Gaussian impulses.  Of i n t e r e s t  

here i s  the time of occurrence of the AP as r e l a t e d  to  the 

cochlear  microphonic. All the da ta  are  from one 

re p re s e n ta t iv e  animal,  where a complete s e t  of measures was 

ob ta ined .



83

Figures 3.3  and 3.4 provide a good example of ac t ion  

p o te n t i a l s  due to  a low frequency s t im ulus .  A shows the 
voltage used to  d r ive  the earphone; B rep resen ts  the sound 

f i e l d  in f ro n t  of the  tympanic membrane; t h i s  i s  a 

condensation impulse. C and D are recordings  from a round 

window e le c t ro d e ,  C being from the normal anes the t ized  

animal and D from the  same animal made anoxic by clamping 

the t rachea  fo r  JO minutes.  This method e f f e c t i v e l y  

abo l ishes  the neural  a c t i v i t y .  This anoxia was . induced a t  

the end of the  experiment,  when a l l  normal d a ta  had been 

c o l l e c te d .  E shows the d i f fe re n c e  between C and D ( D was 

obta ined with a 10 dB h igher  sound l e v e l ) .  In E, a ty p ic a l  

Ni—N2 complex i s  v i s i b l e ,  the time between the N1 and N2 

being around I ms.

Figure 3 .4  shows t r a c e s  s im i la r  to  f ig u re  3,3 but here 

the s t imulus was a r a r e f a c t io n  impulse. As before the t race  

of the anoxic RW CM is  used to  i n f e r  BM movement.

Looking a t  the time where the AP occurs in the  two 

f ig u re s ,  one sees th a t  i t  i s  w ith in  the i n t e rv a l  1.8 to  3 

m il l iseconds  a f t e r  the nega t ive  excurs ion of the round 

window cochlear  microphonic. Note th a t  in f igu re  3 .3 ,  a 

second AP appears a f t e r  the second negative  excursion of the 

RW CM.

Eldredge (1976) found s im i la r  time r e l a t i o n  to  hold 

between CM and AP. He used impulses of  s h o r te r  dura t ion  
than the ones used here .
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The ac t io n  p o t e n t i a l  responses to  the Gaussian impulses 

of long d u ra t ion  are only d e te c ta b le  a t  high i n t e n s i t i e s  of 

sound, Within the 25 dB range of SPL th a t  was a v a i l a b le ,  

the la tency  of the AP did  not vary much. Figure 3 .8  shows 

t r a c e s  equ iva len t  to  t r a c e  E in f ig u re  3 .4 ,  fo r  a s e r i e s  of 

i n t e n s i t i e s  of. the  r a r e f a c t io n  impulse. As seen, the 

la tency of the AP i s  nea r ly  cons tan t  (The reason for  the

d i s t o r t e d  AP in  t r a c e  . B i s  unknown). Also note th a t  the

s ize  of the AP only inc reases  by a f a c t o r  of 2 fo r  a 20 dB 

range of sound i n t e n s i t y .

The same obse rva t ions  hold fo r  the AP genera ted  when 

continuous, s inuso id s  a re  used as s t im u l i .  Figure 3 .9  shows 

the  RW e l e c t r i c a l  a c t i v i t y  caused by a J00 Hz s t im ulus .  B 

i s  a low pass  f i l t e r e d  vers ion  of A, obta ined  by d i g i t a l  

f i l t e r i n g *  C i s  the d i f fe re n c e  between A and B, rendering 

the AP v i s i b l e .  An Nl—N2 complex can be seen,  al though i t  

i s  not as apparent as in the Gaussian impulse case .  Figure 

.3.10 shows t r a c e s  equ iva len t  to  f ig u re  3 .9  fo r  a 200 Hz 

s t im ulus .

The l a t e n c ie s  from the minimum of the RW CM are nearly

c o n s ta n t ,  as in  the case with Gaussian impulses, over the

range of i n t e n s i t i e s  where AP can be d i s t in g u is h e d .  For 

tones with per iod  from 5 to  20 ms (200 to  50 Hz) and in the 

range of 60 t o  90 dB SPL, the  Nl appears in  a l l  cases  in a 

range of 2.1 to  3 .2  ms a f t e r  the nega tive  d ev ia t ion  of the 

RW CM.
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Figure  3 . 8  Action p o t e n t i a l s  due to  a Gaussian 
r a r e f a c t i o n  impulse f o r  v a r io u s  I n t e n s i t i e s  of  the  
impulse,  recorded  from a RW e l e c t r o d e .  A. RW CM 
response f o r  phase comparison, anoxic an im al i  B. 
through F* D if fe rence  between normal and: anoxic 
cases  t o  render  AP v i s i b l e ,  f o r  the  peak equ iva 
l e n t  i n t e n s i t i e s  77, 72, 67 ,62 and 5.7 dB SPL (The 
p e c u l i a r i t y  seen in the AP of  t r a c e  B i s  o f  unk
nown o r i g i n ) .  Bar =■ 200 m ic rovo l ts  ■<A78).
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Figure  3 ,9  A. RW response to  100 Hz, 7.9 dB SPL
cont inuous s in u s o id ,  B. Same as  A, passed
through an FFT Low pass f i l t e r  '(.to s im ula te  anoxic 
c o n d i t io n ,  comparable t o  t r a c e  D, f ig u re  3 . 3 ) t C. 
D if fe rence  between A and B, enhanced by a f a c t o r
of  2 t o  render  AP more v i s i b l e .  Bar = 200
m ic ro v o l ts  (A78).
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Figure 3..I0 A. RW response t o  200 Hz, 72 dB SPL 
continuous s in u s o id .  B. Same as A, passed 
through an FFT low pass f i l t e r  ( to  .simulate anoxic 
co n d id t io n ,  comparable t o  t r a c e  D in f ig u re  3 . 3 ) ;  
C. D if fe rence  between A and B, enhanced by a 
f a c t o r  of 2 to  render  AP more v i s i b l e .  Bar «  200 
m icrovo l ts  . (A78.).
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From the experiments above on the la tency  of the AP we 

conclude t h a t ,  s ince the la tency  i s  f a i r l y  cons tan t  over the 

i n t e n s i t y  range s tu d ied ,  the AP must be generated

predominantly by the  same elements,  i . e .  as i n t e n s i t y  

v a r i e s ,  the responding popula t ion  i s  the same. In a 

s l i g h t l y  d i f f e r e n t  experiment,  Eldredge (1976) came to the 

same conclus ion .  By masking the  basa l  elements with high 

pass f i l t e r e d  n o ise ,  he was able  to  show t h a t  the AP is

genera ted  mostly by neurons of CF higher  than 6 kHz. The

Gaussian impulses used here a re  of  lower frequency than the 

impulses used by Eldredge. The phase of the BM movement

where e x c i t a t io n  of aud i to ry  f i b e r s  occurs due to  a LF tone 

cannot be assessed  exac t ly  from these d a t a ,  because the CF 

of the f ib e r s  t h a t  co n t r ib u te  most to  the AP i s  unknown. We 

can e s t im a te ,  using the f a c t  t h a t  the la tency  of f i b e r s  th a t  

po ss ib ly  c o n t r ib u te  to  the  AP l i e s  in the  i n t e rv a l  1.2 to  

3.5 ms ( f ig u re  3 .1 1 ) ,  t h a t  most f i b e r s  f i r e  in  the in te rv a l  

from 1.4 ms before  maximum ST displacement of the BM to 2.1 

ms a f t e r  t h i s  d isp lacement .  In o th e r  words, fo r  low 

frequency s t i m u l i ,  the  aud i to ry  f i b e r s  f i r e  in the general  

displacement of the BM towards ST.
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Figure 3.11 L a ten c ie s  of  s in g le  au d i to ry  nerve 
f i b e r s -  of t h e . c h i n c h i l l a  fo r  r a r e f a c t i o n  c l i c k s .  
From H a r r i s ,  J977.
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B. Action p o te n t i a l s  due to  tone b u r s t s  modified by LF 

s t im ul i

With the exception of the ac t io n  p o t e n t i a l s  shown in 

f ig u re  3 .5 ,  a l l  the  experiments descr ibed  thus  f a r  have 

d e a l t  with APs th a t  are  e l i c i t e d  by s in g le  cyc les  of a 

continuous tone or Gaussian type impulses. In the following 

experiments responses to  the onset  of tone b u r s t s  of short 

du ra t ion  were s tu d ied ,  and the  in f luence  of low frequency 

s t im u l i  on those responses examined. S inuso ida l  100 Hz 

tones and Gaussian impulses were used as  LF s t im u l i ;  the 

tone b u r s t s  cons is ted  of a few cyc les  of a tone with 

t r i a n g u l a r  o r  cosine envelope. Recordings were from.RW of 

- c h in c h i l l a s  (7 an im als) .

Figure 3 .5  shows a tone b u r s t  of 4 kHz, I ms d u ra t io n ,  

having a cosine envelope, and the  response to  i t  f o r  various 

i n t e n s i t y  l e v e l s .  The CM i s  always a t  the same loca t ion  in 

t ime, al though i t  of  course inc reases  in amplitude for  

h igher  SPLs. The AP on the o the r  hand grows, and a t  the 

same time the  Nl la tency  becomes sh o r te r  as i n t e n s i t y  i s  

increased..  I t  i s  a well documented phenomenon t h a t  the AP 

to  tone b u r s t s  behaves in t h i s  fashion ( e .g .  Oeatherage, 

Eldredge, and Davis 1959). To study the in f luence  of a low 

frequency st imulus on the  response to  a t o n e .b u r s t ,  a short 

b u r s t  w i l l  give a b e t t e r  r e s o lu t io n  in time of the event 

being s tu d ied .  However, the c e n te r  frequency of a bu rs t  

con ta ins  le ss  of the  t o t a l  energy conten t  as the  bu rs t  i s
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shortened.  Figure 3.12 shows some s p e c t r a l  q u a l i t i e s  of 

tone b u r s t s  with cosine envelopes.  A tone b u rs t  of 4

cy c le s ,  for  example, has 83% of the  energy within  h a l f  an 

octave band surrounding the  cen te r  frequency of the b u rs t  

( t r a c e  A)* the spread in frequency of the  f i r s t  lobe ,  to  the 

frequency where the amplitude i s  20 dB below the cen te r  

frequency i s  w ith in  one octave ( t r a c e  C).

More important fo r  our purposes i s  to  t e s t  the  adequacy 

of using shor t  b u r s t s  fo r  exploring  cochlear  func t ion .

Figure 3.4 3 shows th a t  4 cycles  of a given frequency, 

p resen ted  in a cosine envelope, e l i c i t s  an AP with Nl

l a t e n c i e s  th a t  depend on the  ce n te r  frequency of the b u r s t .

Five d i f f e r e n t  f requencies  were used, .5 ,  1, 2, 4 and 8 kHz; 

in a l l  cases ,  the t o t a l  du ra t io n  was 4 cy c le s ,  making the 

s p e c t r a l  con ten t  s im i la r ,  only a s h i f t  in cen te r  frequency 

tak ing  p lace .

The la tency  of  the N l, as funct ion  of the frequency and 

i n t e n s i t y  of the  bu rs t  found here i s  comparable to  the 

la tency  of AP fo r  longer tone b u r s t s .  The ac t io n  p o te n t i a l  

thus seems t o  be genera ted  e n t i r e l y  by the f i r s t  few cycles 

of a tone b u r s t .  Pesta lozza and Davis (1956.) found a 

s im ila r ,  r e l a t i o n s h i p  to  hold fo r  the la tency  of the AP in 

guinea p ig s .  The APs due to  the sh o r t  length  tone bu rs t  

apparen t ly  do have th e  same c h a r a c t e r i s t i c s  as a longer tone 

b u r s t  in e l i c i t i n g  APs. Therefore sh o r t  b u r s t s ,  down to  

only 4 cyc les  in d u ra t io n ,  with a cosine envelope, were used
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Figure  3 . 12 S p ec t ra l  c h a r a c t e r i s t i c s  of tone b u r s t s  
with cos ine  envelopes ,  c a l c u l a t e d  with f a s t  F o u r ie r  
t rans fo rm .  The formula used was
V(t)»(J-cos(2Trf/NCYC))*sin(2ir.ft) , where NCYC i s  the 
t o t a l  number of  cyc les  of the  to n e b u r s t s .  S p e c t r a l  
spread was def ined  as  the  frequency where th e  ampli
tude was more than  20 dB below . the amplitude of  f .  
Energy was de f ined  as  the  r e l a t i v e  energy c o n te n t  of  
the (A*1/2 and B*l/4) octave band sur round ing  the  
c e n te r  frequency f .  Although continuous l i n e s  a re  
drawn, the d a ta  .are v a l id  only f o r  i n t e g e r  v a lu e s  of 
c y c le s  in  tone, b u r s t .
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Figure 3 . I 3  Nl l a t e n c i e s  as f u n c t io n  of sound p re s s u re  
l e v e l .  S timulus was 4 cy c le s  o f  a tone w ith  cos ine  
envelooe. Parameter i s  frequency of the tone in  kHz 
.(A7I Y.
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as probe s t im u l i .

These tone burs ts-were  presen ted  toge ther  with  a 100 Hz 

sine wave. Figure 3 .14  shows t h a t  p lac ing  the bu rs t  a t  

d i f f e r e n t  phases of  the J00 Hz tone has a d r a s t i c  e f f e c t  on 

the AP due to  the b u r s t s .  The a c t i v i t y  in response to  the 

100 Hz alone has been su b t rac ted  from a l l  the graphs,  so as 

to  render the AP due to  the tone b u r s t  v i s i b l e .

The phases shown are. r e f e r re d  to  the  RW CM. Thus, 90 

degrees means that,  th e  bu rs t  was p laced  so th a t  the cen te r  

of i t s  CM appeared on th e  p o s i t iv e  maximum of the CM due to 

the 100 Hz tone .  This corresponds t o  our in fe r red  

displacement of the b a s i l a r  membrane towards the sca la  

v e s t i b u l i .

The AP due to  the tone b u r s t  has a la tency  of between 

one and two m il l i seconds .  This la tency  does not have t o  be 

taken in to  account when in f e r r i n g  the phase of BM movement 

where masking takes  p la c e ,  s ince  the phase i s  r e f e r re d  to 

the CM. In o the r  words, we i n t e r  the  masking to  occur in 

the ST displacement of the b a s i l a r  membrane because when the 

tone hurs t—e l i c i t e d  high frequency CM i s  pos i t ioned  a t  the 

negative maximum of the (low frequency) RW CM due to  the 100 

Hz tone ,  masking i s  seen. The AP d isappea rs  completely for  

270 and 315 degrees .  Note th a t  the  s iz e  of the CM i s  almost 

h a l f  of the to n e .b u r s t  alone condi t ion  i f  the b u rs t  i s  

p resented  in the  270 degree phase of the  RW CM due to  the 

100 Hz. This v a r i a b i l i t y  of the CM was not explored; i t  i s
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Figure  3 . I 4  Tone b u r s t s  of  4 kHz, 45 dB SPL, l .5  ms 
d u r a t io n ,  p laced  a t  d i f f e r e n t  phases of  a 100 Hz con
t inuous  tone of  80 dB SPL. The phase angles  shown are  
those of th e  100 Hz RW.CM where the  CM due t o  the  tone 
b u rs t  appears .  The b a s i l a r  membrane movement can be 
i n f e r r e d  from these  a n g le s ,  90 degrees  meaning maximum 
d e f l e c t io n  towards s c a la  v e s t i b u l i .  A c t iv i ty  t o  100 
Hz alone has been s u b t r a c te d  from a l l  g raphs .  Bar*J00 
m icrovolts  (A64).



96
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SV

ST

0 * 5  10 ms

Figure  3 . J 5  (Data r e p l o t t e d  from f i g .  3 .1 4 )  
In f luence  of  a 100 Hz tone  of 80 dB SPL on th e  s i z e  o f  
the ac t io n  p o t e n t i a l s  due t o  a tone h u r s t  of  4 kHz 50 
dB SPL, of  1.5 ms- d u r a t io n ,  as  the  tone  b u r s t  i s  
p resen ted  on d i f f e r e n t  phases of  th e  100 Hz to n e .  The 
phases a re  r e l a t i v e  to  the CM due to  the  100 Hz t o n e ,  
where the  c e n te r  of  the  CM due t o  th e  tone  b u r s t  
appears .  Ord ina te  acwis i s  r e l a t i v e  t o  s i z e  of AP 
when tonevburs t  i s  p re se n ted  a lo n e .  The v e r t i c a l  
sc a le  i s  reve rsed  fo r  e a s i e r  comparison w ith  nex t  
f ig u re s  (A64).



a m an ifes ta t ion  of the  CM in te r f e r e n c e  phenomenon. When 

p l o t t i n g  the s ize  of the AP as a function  of phase ( f ig u re  

3.45) i t  i s  apparent th a t  the curve has two peaks 

(corresponding to  minimum s ize  of AP), one a t  the in fe r re d  

SV and one a t  the in f e r r e d  ST d isp lacem ents .  At J80 degrees 

the AP has almost the same s iz e  as the AP to  the tone bu rs t  

a lonet  the 100 Hz tone does not seem to  mask the AP in th a t  

phase.

Returning to  f igu re  3 .14 ,  note the change in the Nl 

la ten c y ,  as the b u r s t  i s  p resen ted  in d i f f e r e n t  phases of 

the 4 00 Hz s ig n a l .  Very c a re fu l  t iming of the probe tone 

b u r s t ,  and a l so  the presence o f  the  CM as a time reference  

in  f ig u re  3.14 r u l e  out the p o s s i b i l i t y  t h a t  the obtained 

la tency  s h i f t  be an a r t i f a c t .  . This-magnitude of la tency 

s h i f t  i s  unusually  la rge  in  the  example shown. The la tency  

s h i f t  depends on the i n t e n s i t i e s  of the LF tone and the high 

frequency tone b u r s t .  Other combinations of i n t e n s i t i e s  

y i e ld  s im i la r  r e s u l t s  fo r  the amplitude of the AP, but the 

large la tency  s h i f t  i s  seldom observed. More commonly i t  i s  

in  the -order of .2 ms. I t  i s  p o ss ib le  th a t  the la tency 

s h i f t  i s  only observed in a very narrow region of  lev e ls  for  

the tone b u r s t  and the low frequency tone .

The la tency  s h i f t  was not f u r t h e r  explored in  the 

p resen t  .. s tudy.  In the l i t e r a t u r e ,  however, the re  i s  an 

i n t e r e s t i n g  c o r r e l a t e  o f - t h i s  phenomenon. This i s  the data  

of Zwicker (1977, f i g .  J4) ,  where he shows th a t  a very
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s u b s ta n t ia l  p i t c h  increase  i s  no t iced  fo r  the  probe tone in 

a masking-period p a t t e rn  s tudy ,  when the probe tone is  

placed in a phase of a 40 Hz tone where maximum masking 

occurs .  Perhaps t h i s  p i tc h  s h i f t  i s  produced a t  the 

cochlear  l e v e l .  The s h o r te r  la tency  t h a t  we observe fo r  the 

AP a t  e .g .  225 degrees in f ig u re  3 .14 could be a r e f l e c t i o n  

of the f a c t  t h a t  more basal  f i b e r s  respond to  the s t im ulus .  

Although a causa l  r e l a t i o n s h i p  between these observa tions  

cannot be demonstrated, i t  i s  worth p o in t ing  out the 

q u a l i t a t i v e  agreement between these  d a ta .

Another way to  quant ize  the e f f e c t  t h a t  the low 

frequency has on the AP i s  to  t r y  to  maintain the s iz e  of 

the AP due to  the tone b u r s t  a co n s tan t ,  by ad ju s t in g  the 

SPL, while p lac ing  the tone b u r s t  on. d i f f e r e n t  phases of the 

LF s t im ulus .  Figure 3.16 shows the r e s u l t s  of such an 

a t tem pt .  The i n t e n s i t y  of the b u r s t  was increased  or 

decreased so  th a t  the AP became of the same s ize  as the AP 

e l i c i t e d  by the  tone bu rs t  presented  a lone.

Note th a t  the CM, desp i te  changes in amplitude, does 

not change i t s  loca t ion  in t ime. The Nl l a t e n c y . s h i f t  i s  .2 

ms, between 90 and 0 degrees ,  a more ty p ic a l  value than 

those in f ig u re  3 .1 4 .  These types of  da ta  are  shown 

r e p lo t t e d  in f ig u re  3 .17 .  Three d i f f e r e n t  le v e l s  of 100 Hz 

were used to  genera te  the curves shown. For lower l e v e l s  of 

100 Hz, masking of the tone b u rs t  occurs in the phase where 

the b a s i l a r  membrane i s  in fe r re d  to  be d isp laced  towards ST.
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Figure  3 . J 6  RW a c t i v i t y  due to  a tone b u r s t  o f  4 kHz* 
2 ms, p resen ted  to g e th e r  with  100 Hz, 70 dB SPL* 
Level of b u r s t  was ad ju s ted  s o  t h a t  s iz e  of AP became 
the  same as  t h a t  e l i c i t e d  by the tone b u r s t  a lone  a t  
50 dB SPL. Angles In d ica te  where the  c e n te r  o f  the  CM 
due to  th e  tone b u r s t  appeared on the  CM due t o  100 
Hz. Bar^lOO m icrovolt  (A66).
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Figure  3 . 1 7 Level of tone b u r s t  needed t o  r e s t o r e  the  
s i z e  of the  AP to  th e  same as when the  b u r s t  i s  p re
sen ted  a lo n e .  Bursts  of 4 kHz, o f . I  ms d u r a t io n  su
perimposed on A. 100 Hz. and B. 50 Hz. Parameter  i s  
SPL f o r  the low frequency tone .  C. I n f e r r e d  BM move
ment. BA* 3 u r s t  alone (A65, A74).
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I t  i s  seen th a t  as i n t e n s i t y  of LF in c re a se s ,  two peaks of 

masking appear,  t h a t  i s  to  say, a secondary peak appears at  

90 degrees ,  where the in fe r re d  displacement of the b a s i l a r  

membrane i s  towards SV. At 5 ms in curve A, a small but 

s ig n i f i c a n t  d e v ia t io n  of the  curve towards lower SPLs i s  

seen. This reminds one of the psychoacoustica l  

J,s e n s i t i z a t i o n JI th a t  Deatherage and Henderson reported  in 

1967.

Equivalent curves using 50 Hz in s tead  of 100 Hz as LF 

tone give s im i la r  r e s u l t s ,  as shown in f ig u re  3.17B. Two 

peaks of masking appear fo r  high leve l  of the 50 Hz tone .  

The peaks occur somewhat sooner than the in f e r r e d  maximum 

displacement of the BM towards SV and ST.

The curve in  f ig u re  3.15 d e p ic t s  the s iz e  of the AP, 

whereas f ig u re  3.17 d e p ic t s  tone burs t  i n t e n s i t y  needed to  

recover the  AP to  i t s  s iz e  when presen ted  without a LF tone. 

The curves are q u a l i t a t i v e l y  s im i la r .  Both have 2 peaks,  

the peak corresponding to  ST displacement of the BM being 

h igher i  both have t h e i r  lowest po in t  approximately in the 

in fe r re d  v e lo c i ty  phase of BM movement, from SV to  ST. A 

more q u a n t i t a t iv e  comparison between them cannot be made, 

s ince the  no n l in ea r  behavior of  the AP makes such comparison 

unwarranted^ Each of the paradigms has i t s  own advantages.  

Keeping the i n t e n s i t y  of the b u rs t  cons tan t  means th a t  

observed changes in the AP can be a t t r i b u t e d  to  the LF tone! 

ad ju s t in g  the b u r s t ' s  i n t e n s i t y  to  ge t  the AP of constant
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s ize  i s  a method more d i r e c t l y  comparable to  the 

psychoacoustic "masking per iod  p a t te rn "  paradigm o f  Zwicker 

(1976a).  Emphasis was made on the l a t t e r  method, t h a t  of

ad ju s t in g  the leve l  of the tone b u rs t  to  maintain the AP

size  co n s tan t .  s ince comparisons to  psychoacoustic 

experiments were d e s i r a b l e .

Note the growth of the h igher  masking peak in f ig u re  

3 . J 7 .  For 100 Hz. the peak in c rease s  about .10 dB for a 5 dB 

increase  in the  J00 Hz l e v e l .  In the 50 Hz case t h i s  does 

not hold ,  and masking in the in f e r r e d  ST d i r e c t io n  of 

b a s i l a r  membrane movement becomes overwhelming fo r  50 Hz at 

90 dB SPL. With an inc rease  of only 5 dB in the level  of

the 50 Hz tone ,  one needs almost a 40 dB inc rease  in the

leve l  of the  probe tone to  ob ta in  an AP with the  same size  

as the  AP produced by the probe tone presen ted  a lone .  In 

genera l  t h i s  in p u t -o u tp u t  r e l a t i o n s h i p  i s  very n o n l in ea r .

When a tone bu rs t  i s  p resen ted  with a Gaussian impulse, 

changing the  lo c a t io n  in time of the. tone bu rs t  r e l a t i v e  to  

the Impulse w i l l  have a s i g n i f i c a n t  e f f e c t  on the AP due to 

the b u r s t ,  as In  the s inuso ida l  LF case j u s t  d escr ibed .  

Maintaining th e  s iz e  of the AP cons tan t  by ad ju s t in g  the 

leve l  of the tone b u r s t ,  one g e t s  r e s u l t s  as in f ig u re s  3.18 

and 3 .19 .  The masking seems to  occur when the round window 

a c t i v i t y  i s  e i t h e r  p o s i t i v e  or nega t ive .  By comparing the 

graphs fo r  p o s i t iv e  and negative  p o l a r i t i e s  of the impulse 

one sees th a t  the la rg e s t  peak occurs in  the negative  phase
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Figure 3 . 1 8 AP to. tone b u r s t  p re sen ted  with a 20 ms 
Gaussian impulse.  Level of  tone b u r s t  of  4 kHz, I ms 
d u ra t io n  needed to  r e s t o r e  the AP due to  the  b u r s t  to  
the  s iz e  o f  the  AP when b u r s t  i s  p resen ted  a lone a t  20 
dB SPL. From top* A. Response to  condensat ion  im
p u ls e ,  90 and 85 dB peak eq u iv a len t  SPL» S igna l  vol
tage!  RW CM. B. Response to  r a r e f a c t i o n  im pulse ,  90 
and 85 dB peak e q u iv a len t  SPL. BA> Burst  alone 
(A74).
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Figure 3 . 1 9 AP to  tone  b u r s t  p resen ted  with a 10 ms 
Gaussian Impulse. Level of tone b u r s t  of 4 kHz* I ms 
d u ra t io n  needed t o  r e s t o r e  th e  AP due to  the  b u r s t  t o  
the  s i z e  o f  the AP when b u r s t  i s  p resen ted  a lone  a t  20 
dB SPL. From top* A. Response to  condensat ion  im
pulse* 90 and 85 dB peak equ iva len t  SPLI Rh CM. B. 
Response to  r a r e f a c t i o n  impulse,  85, 80 and 75 dB peak 
equ iva len t  SPL. BA* Burst a lone (A74).



105

of the RW CM, a phase we in f e r  to  ind ica te  displacement of 

the b a s i l a r  membrane towards sca la  tympani.

An i n t e r e s t i n g  “i n t e g r a t i v e 4* e f f e c t ,  t h a t  d i s t in g u i s h e s  

these  responses from the ones due to  s in u so id a l  tones can be 

observed in f ig u re s  3.18 and 3 .19 .  I t  i s  seen t h a t  more 

masking i s  a t t a i n e d  i f  the RW CM i s  p o s i t iv e  before i t  

becomes n eg a t iv e .  In terms of b a s i l a r  membrane 

d isplacement,  t h i s  t r a n s l a t e s  to  s t a t i n g  t h a t  a d e f le c t io n  

towards SV before  a d e f l e c t i o n  towards ST produces more 

masking in the ST d e f l e c t io n  of the b a s i l a r  membrane than 

the masking produced by a d e f l e c t io n  towards ST without 

p r io r ,  d e f l e c t io n  towards SV. This i s  a demonstration th a t  

the response of f i b e r s  i s  dependent not only on the 

Ins tantaneous displacement of the  BM, but a l so  on the  recent  

h i s t o r y  of d isp lacement ,  a t  l e a s t  on the l a s t  two to  f ive  

m il l l seco n d s .

The two types of low frequency s t im u l i  used -  s inuso ids  

and Gaussian impulses -  are  r a d i c a l l y  d i f f e r e n t  in  n a tu re .  

The continuous s inuso id  w i l l  almost c e r t a i n l y  cause adaptive 

mechanisms in  the cochlea to  a f f e c t  the responses to  tone 

b u r s t s ,  whereas the Gaussian impulses are  l i k e l y  to 

in f luence  the  response t o  tone b u r s t s  without much 

adaptat ion .The “ in t e g r a t i v e 4' e f f e c t  descr ibed  above i s  

perhaps the  f i r s t  sign of ad a p ta t io n ,  a f t e r  only a few 

m il l iseconds  of. s t im u la t ions  The masking due to  a second 

d e f l e c t io n  of  the BM due to  a Gaussian pu lse  i s  d i f f e r e n t
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from the masking due to  a f i r s t  d e f l e c t io n .

In summary, th e re  are two phases in the cycle  of a low 

frequency s in u so id a l  s t imulus  where masking takes  p lace .  

These phases are  approximately h a l f  a cycle  a p a r t .  In 

between these  two maxima of masking the re  i s  a phase where

the low frequency tone has l i t t l e  in f luence  or even produces

enhancement of the AP. With the a id  of the  RW CM and the 

information in Chapter I , we. i n f e r  the  maxima of masking to  

occur as the b a s i l a r  membrane is  d isp laced  towards scala  

tympani and sc a la  v e s t i b u l i ,  and the minimum in f luence  of 

the LF tone on the AP due to  the tone b u r s t  t o  occur as the 

BM moves from SV to  ST. In the case of Gaussian impulses 

too ,  i t  i s  observed th a t  masking takes  p lace with 

displacement both towards s c a la  tympani and v e s t i b u l i ,  the 

ST displacement g iv ing  a s t ro n g e r  masking. This i s  in 

q u a l i t a t i v e  agreement with the  r e s u l t s  fo r  s inuso ida l

maskers. S trongest  masking i s  obtained when the b a s i l a r

membrane i s  d isp laced  towards ST a f t e r  having been d isp laced  

towards SV by the  Gaussian impulse. This d i r e c t io n a l

dependence o f  masking in the  Gaussian impulse case i s  the 

only d i f fe re n c e  c l e a r l y  demonstrable between s inuso ids  and 

Gaussian impulse masking c a p a b i l i t i e s .
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3.4 Single u n i t  responses in f luenced  by low frequency

s t im u l i .

I t  has been shown t h a t  the whole nerve ac t ion  

p o te n t i a l s  due to  a shor t  tone b u r s t  can be modified by 

p re sen t in g  a low frequency tone to g e th e r  with the tone

b u r s t .  The observed masking p a t t e r n  of the  AP with i t s  2

peaks per cycle  of the LF tone should have c o r r e l a t e s  in the 

response of s in g le  u n i t s .  A p r i o r i ,  the decrease  in s i z e ,  

or masking, of the AP due to  a tone b u r s t  by a low frequency 

tone can have two equa l ly  l i k e l y  o r i g i n s .  The LF tone could 

cause a suppress ion of f i b e r  a c t i v i t y ,  d im in ish ing  the AP by 

in h ib i t i n g  f i b e r s  from f i r i n g .  The LF tone could a lso  

e l im ina te  the AP by in f luenc ing  the  degree of synchrony of 

f i r i n g  due to  the tone b u r s t .  To e x p la in ,  i f  the LF tone 

causes e x c i t a t io n  o f .a  f i b e r  a t  a time, near  the time of 

a r r i v a l  of the tone b u r s t ,  the f i h e r  w i l l  be in s e n s i t i v e  to  

the tone b u r s t  and w il l  not co n t r ib u te  to  the AP as  i t  does 

when the tone b u r s t  i s  p resen ted  a lone .  The two peaks in 

the masking p a t t e r n  could be caused by e i t h e r  one of these 

mechanisms, and po ss ib ly  each peak by each mechanism. 

Therefore ,  in the  responses of au d i to ry  f i b e r s  i t  i s  equally  

l i k e ly  to  f ind  2 e x c i t a t i o n  peaks as 2 suppress ion peaks, at 

the p laces  where masking i s  observed in  the AP s tudy .

In the experiments to  follow i t  i s  shown th a t  the two 

masking peaks per  cycle, of a high in te n s i t y  LF stimulus 

observed in the AP study may be c o r r e l a t e d  with two
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suppression regions in the f i b e r  a c t i v i t y , p e r  cycle of the 

LF s t im ulus .

A d i r e c t  proof of t h i s  r e l a t i o n  would involve repea t ing  

the AP experiments of sec t io n  3 .3 ,  observing responses of 

s ing le  u n i t s  in s tead  of whole nerve AP. This i s  d i f f i c u l t  

to  perform due to  the  shor t  time t h a t  a s in g le  f ib e r  can be 

contac ted .  For each po in t  on the masking, diagram, a 

histogram would have t o  be cons truc ted  t o  study the a c t i v i t y  

of the  f i b e r  to  the given timing of the tone burs t  on the LF 

tone.  At l e a s t  8 po in ts  per cycle  would have to  be

c o l l e c te d ,  to  ob ta in  a reasonably  continuous curve. The 

s ing le  u n i t  ac t ion  p o t e n t i a l s ,  or sp ikes ,  would have to  be 

counted in each of these h is tograms, a n d . th i s  count used to 

a s se s s  the f i b e r ' s  a c t i v i t y .  For small samples t h i s  

counting i s  u n r e l i a b l e .  A given s t im ulus  w i l l  on the o the r  

hand genera te  a c h a r a c t e r i s t i c  histogram. The p a t te rn  of 

the histogram i s  well rep roduc ib le ,  although the t o t a l

number of sp ikes  d e te c te d  may be d i f f e r e n t  from histogram to  

histogram.

Due to  these  d i f f i c u l t i e s ,  a continuous tone a t  the 

c h a r a c t e r i s t i c  frequency of the nerve f i b e r ,  superimposed on 

the LF s t im ulus ,  was used ins tead  of tone b u r s t s .  This 

procedure i s  not equ iva len t  to  using a tone b u rs t  on various 

phases of the LF s t im u lus ,  s ince  the dynamics of the 

response of f i b e r s  to  b u r s t s  i s  d i f f e r e n t  from the one for

continuous tones .  This issue i s  expanded in Chapter 4.
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Nonetheless ,  the response of  the  f ib e r  to  the  con t inuous  CF 

tone i s  modulated by the  low frequency s t im u lu s .  This 

modulation has two minima and two maxima per cycle* t h a t  can 

be c o r r e l a t e d  with the  r e s u l t s  of the whole nerve AP study  

d esc r ib ed  in s e c t io n  3.3B.

Before we cons ide r  experiments us ing  a LF tone to g e th e r  

with a continuous CF to n e ,  l e t  us examine the  response  of 

.s ingle  u n i t s  t o  low frequency tones  p resen ted  a lo n e .

A. Low frequency s t im u l i  p resen ted  a lone .

When a low frequency tone i s  p resen ted  t o  the  co ch lea ,  

whole . nerve ac t io n  p o t e n t i a l s  are  gene ra ted .  They can be 

d e te c te d  in  the  RW a c t i v i t y  superimposed on the  CM as  shown 

in s e c t io n  3.3A. There i t  I s  shown t h a t  th e se  APs occur 2.1 

to  3 .2  ms a f t e r  the RW CM (due to  the  LF tone)  reaches  i t s  

minimum va lue .  S u b t ra c t in g  the  l a t e n c y ,  i t  was i n f e r r e d  

t h a t  the au d i to ry  f i b e r s  were e x c i te d  from - 1 .4  t o  2 .J  ms 

cen te red  around th e .  d isp lacement of the BM towards ST. A 

c o r r e l a t e  of t h i s  f in d in g  should be found in  th e  responses  

- of the s in g le  au d i to ry  f i b e r s .  However, the p r e s e n t  s tudy  

shows, a s  the  s tu d i e s  reviewed i t  Chapter I ,  t h a t  th e  f i r i n g  

phase of s in g le  u n i t s  i s  not a simple fu n c t io n  o f  BM 

movement.



F i r in g  phase and b a s i l a r  membrane movement.

The time of e x c i t a t i o n  of the  f i b e r s  as  r e l a t e d  to  the 

BM movement can be I n d i r e c t l y  assessed  from the time of 

maximum a c t i v i t y  in  the  his tograms ( t f ) ,  the time of zero 

c ross ing  of the round window CM (tRWO), and the  la ten c y  of 

the f i b e r  ( t l a t )  in q u es t io n .  The reason ing  i s  as  follows* 

The time tBMO is. d e f in e d ,  as the  time when th e  b a s i l a r  

membrane at. the  lo ca t io n ,  innervated  by the  f ibe r ,  being 

co n tac ted  i s  in  i t s  upward movement, i . e .  going towards SV, 

and c ro ss in g  i t s  r e s t i n g  p o s i t i o n .  The time of  e x c i t a t i o n  

of the nerve f i b e r ,  t e ,  r e l a t i v e  t o  tBMO i s  de f in ed  as  the 

time o f  f i r i n g ,  t f ,  l e s s  synap t ic  and neu ra l  conduction 

t ime, t d .

t e = t f - t d —tBMO

These q u a n t i t i e s ,  td  and tBMO were not  measurable 

d i r e c t l y .  To r e l a t e  the  b a s i l a r  membrane movement to  

measurable q u a n t i t i e s ,  the  round window coch lea r  microphonic 

i s  used, as  b e fo re .  As explained, in Chapter 1, the  RW CM is  

assumed to  r e f l e c t  the  BM movement a t  the  b a s a l  end of the 

coch lea .  I t  t a k es  a t ran sm iss io n  time t t  f o r  a .d i s tu rb a n c e  

a t  the base t o  t r a v e l  from the round window reg ion  to  the 

p lace  of in n e rv a t io n  of the  f i b e r .  The. ze ro  c ro s s in g  time 

of the  b a s i l a r  membrane, tBMO, a t  the  lo c a t i o n  . of 

in n e rv a t io n  can th e r e fo r e  be r e l a t e d  to  the  RW CM by

tBMO=tRWO+tt

th u s .
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te=tf- td-tRWO-tt

The c l i c k  la tency  of a f i b e r ,  t l a t ,  i s  made up of an 

acous t ic  de lay ,  a t r a v e l l i n g  time on the b a s i l a r  membrane 

and the synaptic  and neural  conduction time,

t l a t = t a c + t t + t d .

Neglecting the acous t ic  delay time from the s t im u la t in g  

earphone to  the s tapes  and assuming i t  v a l id  to  equate the 

t r a v e l l i n g  time of a c l i c k  with the  one for a s inuso ida l  

(Goldstein e t  al  1971), the sum of. the t r a v e l l i n g  time t t  

and the delay time td  can be equated with the c l i c k  la tency 

of the f i b e r ,  t l a t .

t l a t « t d + t t ,  and thus

te= t f - tR W -t la t

.T h is  formula can be used to  as sess  the phase of the 

b a s i l a r  membrane where e x c i t a t io n  occurs .

A word about what i s  meant by e x c i t a t io n  i s  appropr ia te  

he re .  The time preceding the time of  d e tec t io n  of a sp ike ,  

l e s s  the  synapt ic  and neural  de lays  was defined as t e .  The 

time elapsed from the onset of e x c i t a t io n  and the s t a r t  of 

synaptic  t ransm iss ion  i s  unknown, but probably small* Corey 

and Hudspeth (1979b) have shown in the b u l l  frog th a t  l e s s  

than 40 microseconds e lapse  from the mechanical s t im ula t ion  

of the c i l i a  to  d ep o la r iz a t io n  of the h a i r  c e l l .  We 

es t im ate  th e re fo re  t h a t  t e  i s  un ce r ta in  by the small time
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from the app rop r ia te  BM ex c i ta to ry  movement to  the time of 

synaptic  t ransm iss ion .

To summarize, we can es t imate  the motion of the BM due 

to the low frequency st imulus as e x c i t a t io n  takes  p lace ,  

with the a id  of th ree  measurements, the RW CM, the histogram 

of the f ib e r  a c t i v i t y  due to. the LF s t imulus and the c l i c k  

la tency  of the f i b e r .

The responses  of s in g le  aud i to ry  f i b e r s  to  low

frequency tones have cons iderable  v a r i a t io n  from f ib e r  to  

f i b e r .  In f a c t ,  the v a r i a b i l i t y  of responses does not allow 

a c l e a r  conclusion to  be made, as to  the exact phase of 

f i r i n g  of the f i b e r ,  as r e l a t e d  to  the phase of the incoming

tone.  Figures 3.20 t o  3.26 show his tograms of the response

of s ing le  aud i to ry  f i b e r s  to  a J 00 Hz tone .  The method of 

c o l l e c t in g  data  to  c o n s t ru c t  a histogram i s  d iscussed  in 

Chapter 2. These f ig u re s  are  arranged in order  of

inc reas ing  f i b e r ' s  c h a r a c t e r i s t i c  frequency. The s t a r t i n g  

time of a l l  histograms where LF s inuso ids  were used,  i s  the 

time of p o s i t iv e  going zero c ross ing  of the LF voltage to  

the earphone. In order  to  r e l a t e  the f i b e r ' s  f i r i n g  to  the 

b a s i l a r  membrane movement one has to  f ind  the time of 

maximum a c t i v i t y  of  the  f i b e r ,  and a l so  a s se s s  the BM 

movement a t  the place where the f i b e r  innerva tes  the organ 

of C o r t i .  The s inuso ids  in the f ig u re s  rep resen t  the 

in fe r re d  movement of th e  BM a t  the p lace  of in n e rv a t io n ,  

using the round window cochlear  mlcrophonic and. the latency
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of the f i b e r  as descr ibed  above.

The histograms of responses to  100 Hz to n e ,  i n  f ig u re s  

3.20 to  3 .26 ,  have severa l  i n t e r e s t i n g  f e a tu r e s .  F i r s t  i t  

i s  observed t h a t  a p a t t e rn  of e x c i t a t io n  and in h ib i t io n  i s  

brought about by the 100 Hz tone .  For higher i n t e n s i t y  of a 

100 Hz tone one observes t h a t  in some in s tances  more than 

one peak per cycle  appears on the histogram ( e .g .  f igu re  

3 .2 1 ) .  This phenomenon has been c a l l e d  peak s p l i t t i n g .  The 

phase of the  l a rg e s t  peak can change with i n t e n s i t y  as 

demonstrated in f ig u re  3 .2 4 ,  where the peak of a c t i v i t y  for  

h igher  le v e l s  appears l a t e r  than fo r  lower l e v e l s  of the 100 

Hz tone.  This i s  in c o n t ra s t  to  the main l in e  of thought ,  
t h a t  h igher  l e v e l s  u sua l ly  give s h o r te r  delays ( e .g .  Kiang 

e t  a l ,  1965).

In order to  f ind  the  phase of f i r i n g  of the f i b e r  to  

the LF s t im ulus ,  the time of maximum a c t i v i t y  of the  f i b e r  

from his tograms,  f o r  as low an i n t e n s i t y  of the tone as 

po ss ib le  was determined.  As CF in c re a s e s ,  higher 

i n t e n s i t i e s  a re  needed to  observe a response of the  f i b e r  to  

100 Hz.

Figure 3 .27 shows t e ,  the time of e x c i t a t io n  of f i b e r s  

as r e l a t e d  to  BM movement, from 15 c h i n c h i l l a s .  I t  i s  c l e a r  

t h a t  a cons iderab le  spread in t h i s  time i s  present  

e s p e c ia l ly  f o r  c h a r a c t e r i s t i c  f re q u en c ie s  between 2 and 5 

kHz. Although the  number of f i b e r s  in v e s t ig a te d  (75) i s  too 

low for a r igorous  a n a ly s i s  th e re  are some i n t e r e s t i n g
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Figure 3 .2 0  Histograms of s in g l e  a u d i to ry  f i b e r  ac
t i v i t y .  Bottom t race*  BM movement a t  t h e  p la c e  of 
in n e rv a t io n  of the  f i b e r  i n f e r r e d  from RW CM. s h i f t e d  
to  the  r i g h t  by th e  la tency  of  the  f i b e r .  Parameter  
i s  l e v e l  o f  100 Hz tone in  dB SPL. Unit  85—13* CF .2  
kHz* SR 68 sp /s*  Lat .  3 .0  ms. Bar*IO counts* 
N=400.
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Figure 3.2J Histograms of s in g le  a u d i to r y  f i b e r  ac
t i v i t y .  Bottom t rac e s  BM movement a t  the  p lace  of  
in n e rv a t io n  of  the  f i b e r  I n f e r r e d  from RW CM. s h i f t e d  
to  the  r i g h t  by the la te n c y  o f  the  f i b e r .  Parameter 
I s  le v e l  of  100 Hz tone In dB SPL. Unit 45-8; CF .7 
kHz? SR 5 s p / s i  Lat 2 .4  ms. Bara>]0 counts? N=400.
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Figure  3 .2 2  Histograms of  s in g le  au d i to ry  f i b e r  ac
t i v i t y .  Bottom t race*  BM movement a t  th e  p la c e  o f  
in n e rv a t io n  of the f i b e r  i n f e r r e d  from RW CM s h i f t e d  
t o  the r i g h t  by the la ten c y  of th e  f i b e r .  Parameter 
i s  le v e l  o f  1 00 Hz tone in dB SPL. Unit  44-14* CF .8 
kHz* SR 44 s p / s ;  Lat 2 .2  ms. Bar*J0 counts* N-400.



117

- ~~ - »■ A - - ft 5

________ 75

A .85

A. j L .95

SV

10 15 m s
ST

Figure 3.23. Histograms of s in g l e  a u d i to ry ,  f i b e r  a c 
t i v i t y .  Bottom t r a c e i  BM movement a t  the p lace  of 
in n e rv a t io n  of the  f i b e r  in f e r r e d  from RW CM. s h i f t e d  
to  the r i g h t  by the la tency  of the  f i b e r .  Parameter 
i s  leve l  o f  J00 Hz tone in dB SPL. Unit A84—7? CF 
2 .2  kHz? SR 3 s p / s i  Lat .  2 .2  ms. Bar*l0 counts!  
N=400.
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Figure  3 .2 4  Histograms o f  s i n g l e . a u d i t o r y  f i b e r  ac
t i v i t y .  Bottom t r a c e s  .. I n fe r r e d  BM movement a t  the  
p lace  of- in n e rv a t io n  o f  the  f i b e r  i n f e r r e d  from RW CM 
s h i f t e d  t o  the  r i g h t  by the la ten c y  o f  th e  f i b e r .  
Parameter i s  l e v e l  of J00 Hz tone in  dB SPL. Unit 
85-51 CF 4 .5  kHz! SR 75 sp /s*  Lat 1.4 ms. Bar»J0 
counts* N=*40Q.
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Figure 3 .2 5  Histograms of s in g l e  a u d i to r y  f i b a r  ac
t i v i t y .  Bottom t rac e s  . I n fe r r e d  BM movement a t  the  
p lace  of in n e rv a t io n  of the f i b e r  i n f e r r e d  from RW CM 
s h i f t e d  t o  the  r i g h t  by the  la te n c y  of  th e  f i b e r .  
Parameter i s  l e v e l  of 100 Hz tone in  dB SPL. Unit 
A84—2; CF 9 kHz; SR 59 s p / s ;  Lat 1.5  ms. Bar*10 
counts ;  N=*400.
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Figure  3-26 Histograms o f  s in g le  a u d i to ry  f i b e r  ac
t i v i t y .  Bottom t r a c e s  , I n fe r red  BM movement a t  the  

. p lace  of in n e rv a t io n  of  the f i b e r  i n f e r r e d  from RW CM 
s h i f t e d  t o  th e  r i g h t  by the  la ten cy  o f  th e  f i b e r .  
Parameter  i s  l e v e l  of  100 Hz tone in  dB SPL. Unit 
A45-7; CF. 20 kHz* SR 13 s p / s f  Lat 1.5 ms. Bar«i0 
coun ts ;  N**400.
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Figure  3 .27  P o s i t io n  of  maximum a c t i v i t y  of au d i to ry  
f i b e r s  w i th in  a cyc le  of a J 00 Hz s t im u lu s .  I n t e n s i t y  
of 100 Hz used was lowest  p o s s ib le  to  d e t e c t  an a c t iv e ;  
t t y  maximum v i s u a l l y  on a h is togram . The s in u s o id a l  
r e p r e s e n t s . i n f e r r e d  BM movement a t  the  p lace  o f  i n n e r -  
v a t io n  of the  f i b e r  as e x c i t a t i o n  tak es  p l a c e .  Note 
dichotomy of  t im e,  f i b e r s  of low CF f i r e  around 9 .6  ms 
( f i b e r s  w i th  te  l e s s  than 2 ms were t ransposed  by 10 
ms), f i b e r s  of  high CF f i r e  around 5 .8  ms ( e n c i r c l e d  
group) .  No f i b e r s  f i r e d  In the  i n t e r v a l  1.7 t o  3 .7  
ms. 75 f i b e r s  from 15 . c h i n c h i l l a s .
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f e a tu re s  to  be seen in f ig u re  3 .27 .  There seems to  be a 

dichotomy of time of f i r i n g ,  cen te r in g  around 10 ms for low 

frequency f ib e r s  and 6 ms fo r  high, with an overlapping 

region between 3 and 5 kHz. The group of f i b e r s  en c i rc led  

by the dashed l i n e  has an average e x c i t a t io n  time of 5.9 ms, 

and the group ou ts ide  i t  an average of 9 .7 ;  f i b e r s  th a t  

f i r e d  near 0 ms were transposed up by 10 ms. Observe th a t  

no f ib e r  f i r e d  between 1.7 and 3.7 ms.

I t  i s  i n t e r e s t i n g  to  attempt to  c o r r e l a t e  these  times 

to  the time of  occurrence of the APs in sec t io n  3.3A. There 

i t  i s  shown t h a t  the AP occurs a t  two to  th ree  m il l iseconds 

a f t e r  the nega tive  d e f l e c t io n  of the round window CM takes 

p la ce ,  due to  the  100 Hz s ig n a l .  As d iscussed ,  su b t r a c t in g  

the la tency  from these  f ig u re s  we assessed  the e x c i t a t i o n  of 

the f i b e r s  to occur somewhere in the i n t e r v a l  - 1 .4  to  2.1 ms 

around the displacement of the b a s i l a r  membrane towards ST. 

In f ig u re  3.27 t h i s  corresponds to  the in t e rv a l  6.1 to  9.6 

ms. In order  to  s t a t e  t h a t  one or the o the r  popula t ion of 

f i b e r s  i s  respons ib le  fo r  the AP gene ra t ion ,  one would have 

to  assess  the time of f i r i n g  of f i b e r s  to  be near the 

average in f e r re d  AP f i r i n g  t ime, namely around 

(9 .6 + (7 .5 - 1 .4 ) J /2-7 .85  ms. In f ig u re  3 .27 ,  the  average time 

of f i r i n g  fo r  f i b e r s  with CF above 6kHz i s  6.1 msi the 

average time of  f i r i n g  for  low frequency f i b e r s  i s  around 

9.7 ms. We are  th e r fo re  unable to  conclude which population 

c o n t r ib u te s  most to  the observed AP due to  low frequency 

s t  i mu1i .
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The response of aud i to ry  f ib e r s  to  a Gaussian impulse 

presented  alone have s im i la r  phase c h a r a c t e r i s t i c s  as the 

response to  100 Hz. Figures -3.28 to  3.31 show examples of 

t h i s .  F ibers  of CF h igher  than approximately 6 kHz respond 

weakly to  a Gaussian pu lse .  Usually le v e l s  h igher  than 95 

dB peak equ iva len t  SPL are  needed to  evoke a response from 

these  f i b e r s .  As in the 100 Hz. s tudy, f i b e r s  with low CF 

respond in a phase th a t  i s  in fe r re d  to  correspond to  BM 

movement from ST to  SV, and f i b e r s  with h igher  CF tend to 

respond in the opposite  d i r e c t io n  of BM movement, i . e .  from 

SV to  ST.

Comparing the s in g le  u n i t  da ta  in f ig u re s  3 .28  to  3.31 

with the da ta  in f ig u re s  3 .3  and 3.4 one can t e n t a t i v e l y  

conclude th a t  the APs seen in f ig u re s  3.3 and 3.4 are 

generated by predominantly low frequency f i b e r s ,  because 

f ig u re s  3.28 to  3.31 show th a t  f i b e r s  of CF lower than 4 kHz 

tend to  f i r e  in the ST to  SV v e lo c i ty  phase of the BM 

movement. This conclusion i s  in c o n t r a s t  with the data of 

Eldredge, showing th a t  f i b e r s  of CF higher th a t  6 kHz must 

be the main co n t r ib u to r s  to  the APs. One d i f fe re n ce  here 

th a t  could explain  t h i s  d iscrepancy i s  t h a t  the LF impulses 

used by Eldredge had a cos iderab ly  higher  frequency content 

than our Gaussian impulses.
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Figure  3 .28  Responses of an au d i to ry  nerve f i b e r  t o  
Gaussian p u l s e s .  F i r s t .  3 h is tograms a re  of responses  
to  condensation impulse,  l a s t  3 fo r  . r a r e f a c t i o n  im
p u ls e .  Parameter i s  dB SPL of  impulses (peak equiva
l e n t  to  s in u s o id a l  sound).  The BM movement i s  in 
f e r r e d  from RW CM s h i f t e d  to  the r i g h t  by the  l a ten c y  
of  th e  f i b e r .  Unit  85-131 CF .2  kHzl SR 68 sp /s«  
L a t .  3 .0  ms. Bar=10 counts!  N=400.
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Figure 3 .2 9  Responses of an au d i to ry  nerve f i b e r  to  
Gaussian p u l s e s .  . F i r s t  3 h is togram s are  of responses  
to  condensat ion impulse, l a s t  3 fo r  r a r e f a c t i o n  im
p u lse .  Parameter i s  dB SPL of  impulses (peak equiva
le n t  to  s in u s o id a l  sound). The BM movement i s  in
f e r r e d  from RW CM s h i f t e d  t o  th e  r i g h t  by the  l a te n c y  
of the  f i b e r .  Unit 85-11? CF l .Ol SR 63? Lat 1.5 
3ara IO counts? N=400.
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Figure 3 .JO Responses o f  an au d i to ry  nerve f i b e r  to
Gaussian p u l s e s .  F i r s t  3 . h is tograms a re  of responses  
to  condensation impulse* l a s t  .3 f o r  r a r e f a c t i o n  im
p u ls e .  Parameter i s  dB SPL of impulses (peak equiva
l e n t  t o  s in u so id a l  sound).  The BM movement i s  in
f e r re d  from RW CM s h i f t e d  t o  the  r i g h t  by the  l a t e n c y  
of the  f i b e r .  Unit 85-16! CF 4 .0  kHz» SR 36 s p / s f
L a t .  1.3 ms. Bar*10 counts!  N=40Q.
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Figure  3*3J Responses of an au d i to ry  nerve f i b * r  f n
G° " sslas  H i r s t  3 h is tograms a "  of  responses
to  condensat ion  Impulse, l a s t  3 f o r  r a r e f a c t i o n ? ”
f o i f  ;  P ^ a m e te r  i s  dB SPL of  impulses (peak eq u iv a -  
l e n t  to. si.nusoida.1 sound)* The BM mov^mftni' <e *

?T!!d e f r om RW CM s h i f t e d  t o  the  r i g h t  by th e  l a t e n c y  of the  f i b e r .  Unit  85-10. CF 5 .5  kHz. SR 3(5 s£J?«
Lat I .2  ms Bar«i0 counts* N=400.
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B. Fiber  a c t i v i t y  in response t o  tones a t  CF toge ther  with 

low freauency s t i m u l i .

When a continuous tone of 100 Hz i s  presen ted  with a 

tone a t  the c h a r a c t e r i s t i c  frequency of a f i b e r ,  the 

m ajor i ty  of aud i to ry  f i b e r s  in the  c h in c h i l l a  w i l l  respond 

in a fashion  dep ic ted  in f igu re  3.32.  The J00 Hz tone alone 

produces weak response in. a f i b e r  such as t h i s ,  of CF=4 kHz, 

even a t  95 db SPL ( t r a c e  A). The rema.rk.able f ind ing  i s  tha t  

a 100 Hz tone a t  65 dB SPL, w i l l  modulate the a c t i v i t y  of 

the f i b e r  th a t  i s  brought about by the CF tone ( t ra ce  C). 

As befo re ,  i t  i s  p o ss ib le  to  i n f e r  the b a s i l a r  membrane 

movement as e x c i t a t io n  takes  p la c e .  I t  i s  seen th a t  a 

supress ion  of a c t i v i t y  occurs in the in f e r r e d  ST d e f le c t io n  

of the BM. For low le v e ls  of the 100 Hz tone ,  the h a l f  

cycle  cen tered  in the SV d i r e c t io n  of BM d e f l e c t io n  i s  not 

suppress ive ,  but as the lev e l  of the CF tone i s  Increased ,  a 

second masking region i s  brought about ,  in the phase of 

maximum d e f l e c t io n  of the BM towards SV. This behavior 

produces two masking per iods  per  cycle  of the 100 Hz tone ,  

one th a t  appears fo r  moderate, l e v e ls  of J00 Hz, and in fe r red  

to  occur as th e  BM i s  d e f le c te d  towards. ST, the o ther  

appearing a t  the time of SV displacement of the BM, fo r  

h igher  le v e ls  of the 100 Hz. The two a c t i v i t y  peaks 

coincide with the maximum v e lo c i ty  of the BM, from SV to  ST 

and ST to  SV. As i n t e n s i t y  of J00 Hz i s  increased even 

more, one of the a c t i v i t y  peaks may d iminish .  Usually i t  i s
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Figure 3 .3 2  Inf luence  of  a 4 00 Hz ..tone on a u d i to ry  
f i b e r  responses  t o  a continuous tone a t  CF. A. J00 Hz 
tone alone w i l l  . e l i c i t  small  r e sp o n se« u n le s s  a t  h igh  
l e v e l s  as  in B. C t o  F* 100 Hz modulates t h e  a c t i v i t y  
of the f i b e r  due to  the  CF to n e .  Note 2 peaks of 
a c t i v i t y  p e r  cyc le  f o r  high l e v e l s  o f  the  JOO Hz to n e .  
Bottom t race*  BM movement a t  the  p lace  o f  in n e rv a t io n  of 
the  f i b e r  as e x c i t a t i o n  takes  p la c e ,  i n f e r r e d  from RW CM 
and s h i f t e d  to  th e  r i g h t  by th e  la tency  of. th e  f i b e r .  
Dashed l ine*  Approximate le v e l  of a c t i v i t y  of  f i b e r  
d r iven  by the  CF tone p re sen ted  a lone .  Unit  A5J-8? CF 4 
kHz? SR .5 sp/s* Lat 2 ms. Bar*10 coun ts ;  N=400.
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the peak th a t  i s  in f e r r e d  to  occur as the BM moves from ST 

to  SV th a t  diminishes f i r s t  ( t r a c e s  E ,F) .

For comparison purposes* a dashed h o r izo n ta l  l in e  i s  

drawn in each p e r t in e n t  histogram* in d ic a t in g  the 

approximate a c t i v i t y ,  i f  the CF tone were presen ted  alone.  

I t  i s  remembered th a t  because of the  v a r i a b i l i t y  in spike 

count from, histogram to  histogram, t h i s  l in e  has a 

q u a l i t a t i v e  func t ion  only.  Figure 3.33 shows data  d ep ic t in g  

the p o s i t io n  of the two e x c i t a t i o n  peaks th a t  almost

in v a r iab ly  appear., when a tone a t  CF i s  p resen ted  with a LF 

tone.

When the leve l  of the J00 Hz tone i s  kept co n s tan t ,  

decreasing  the lev e l  of the continuous CF tone w i l l  have the 

e f f e c t  of deepening the  masking region in the phase of 

in fe r re d  d e f l e c t io n  of the  BM towards S.V. This i s  shown in 

f igu re  3.34.

. Figures 3.35 to  3.39 show th a t  the responses of f ib e r s  

of d i f f e r e n t  CFs have s im i la r  c h a r a c t e r i s t i c s  of modulation. 

The f i b e r s  of high CF did not respond to  100 Hz when

presented  a lone t  yet  the behavior, of the peaks i s  s im i la r  to 

th a t  of f i b e r s  of lower CF. Due to  d i f f i c u l t i e s  in 

maintaining good e lec t rode  c o n ta c t ,  study of  the number of 

spikes per histogram was not done. Therefore i t  i s  not 

poss ib le  to  determine ex ac t ly  whether the J00 Hz tone 

decreases  or in c re a se s  the average a c t i v i t y  of  the f i b e r .

On the other  hand the f a c t  t h a t  two suppression regions are
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Figure -3.33 E x c i ta t io n  time of au d i to ry  f i b e r s  in  
response t o  a continuous tone a t  CF to g e th e r  w ith  a 100 
Hz tone .  Small dots* A c t iv i ty  peak near  i n f e r r e d  ST t o  
SV v e l o c i t y  phase of BM movement. Large d o t s s  A c t i v i ty  
peak near th e  SV t o  ST v e l o c i t y  phase of BM movement. 
49 f i b e r s  from 14 . c h i n c h i l l a s .
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Figure  3 .3 4  Responses o f  a u d i to ry  f i b e r s  t o  a 
continuous tone  a t  CF to g e th e r  with a 100 Hz to n e .  
Bottom -trace-* BM movement a t  . the  p lace  o f  in n e rv a t io n  of 
the f i b e r  as e x c i t a t i o n  takes  p la c e ,  i n f e r r e d  from RW , 
s h i f t e d  t o  the  r i g h t  by the  la tency  of  th e  f i b e r .  Level 
of  J 00 Hz was v a r ie d  in  A t o  D; l e v e l  o f  CF was v a r ied  
in E-H. Dashed l ine*  Approximate lev e l  o f  a c t i v i t y  o f  
f i b e r  d r iven  by the  CF tone p resen ted  a lo n e .  Unit  
A82-8* CF 3 . 5  kHz; SR .5  s p / s ;  Lat 2 .0  ms. Bar* .10 
counts? N^400.
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Figure 3 .35  R esponses o f au d i to ry  f i b e r s  t o  a cont inuous 
tone a t  CF p r e s e n te d '  to g e th e r  with a tone a t  100 Hz. 
Bottom t race*  BM movement a t  the  p iace  o f  in n e rv a t io n  of 
the  f i b e r  as e x c i t a t i o n  takes  p la c e ,  i n f e r r e d  from RW 
CM, . s h i f t e d  t o  r i g h t  by the la te n c y  of the  f i b e r .  Note 
disappearance,  of a c t i v i t y  in  the  ST-SV movement of the  
BM. Dashed l ine*  Approximate le v e l  of a c t i v i t y  of f i b e r  
d r iven  by the  CF tone p resen ted  a lone .  Unit A84— I ; CF 
5 .5  kHz; SR 26 s p / s i  Lat 1.5 ms. Bar=10 c o u n ts ;  N»400.
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Figure  3 .36  Responses o f  au d i to ry  f i b e r s  t o  a
continuous tone a t  CF p re sen ted  to g e th e r  w ith  a tone a t
J00 Hz. Bottom t r a c e  1 BM movement a t  the  p lace  of  
Innerva t ion  of . the  f i b e r  as  e x c i t a t i o n  ta k e s  p l a c e ,  
i n f e r r e d  from RW CM, s h i f t e d  t o  r i g h t  by th e  l a t e n c y  of  
the f i b e r .  Dashed l ine*  Approximate l e v e l  o f  a c t i v i t y  
of f i b e r  d r iven  by the CF tone p resen ted  a lo n e .  Unit
A82—1 I CF 6 .5  kHz* SR 80 s p / s i  Lat 4.5 ms. Bar*IO
coun ts ;  N=400.
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Figure 3 -3 1  Responses of  au d i to ry  . f ib e r s  to  a 
continuous tone a t  CF presen ted  to g e th e r  w i th  a tone a t  
■100 Hz* Bottom t races  BM movement a t  th e  p la ce  of  
inn e rv a t io n  of. the  f i b e r  as e x c i t a t i o n  t a k e s  p la c e ,  
i n f e r r e d  from RW CM, s h i f t e d  t o  r i g h t  by th e  l a t e n c y  of  
the f i b e r .  Dashed l in e s  Approximate l e v e l  o f  a c t i v i t y  
of  f i b e r  d r iv en  by the  CF tone p resen ted  a lo n e .  Unit  
A84-8* CF 7 kHz* SR 23 s p / s f  Lat 1.8 ms. Bar=.l0 counts!  
N=400.
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Figure 3*38 Responses of  a u d i to ry  f i b e r s  to  a 
continuous tone a t  CF p resen ted  to g e th e r  with a tone  a t  
J00 Hz. Bottom t race*  BM movement a t  the  p lace  or  
inne rv a t io n  of the f i b e r  as  e x c i t a t i o n  t a k e s  p l a c e ,  
i n f e r r e d  from RW C M , .s h i f t e d  t o  r i g h t  by the  la ten c y  of 
the  f i b e r .  Dashed l ine*  Approximate l e v e l  o f  a c t i v i t y  
of f i b e r  d r iven  by the  CF tone p resen ted  a lo n e .  Unit 
A84-9.* CF U kHz! SR .3 sp /s !  Lat 1.8 ms. Bar-J.O 
coun ts !  N»400.
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Figure 3 .39  Responses, of a u d i to ry  f i b e r s  t o  a 
continuous tone a t  CF p resen ted  to g e th e r  with  a tone a t  
J 00 Hz. Bottom t race*  BM movement a t  t h e .  p la c e  of 
inn e rv a t io n  of the f i b e r  as  e x c i t a t i o n  t a k e s  p l a c e ,  
in f e r r e d  from RW CM,-shifted t o  r i g h t  by the  l a t e n c y  of 
the  f i b e r .  Dashed l i n e *  Approximate l e v e l  o f  a c t i v i t y  
of f i b e r  d r iven  by the  CF tone p resen ted  a lo n e .  Unit  
A84-I0? CF 14 kHz? SR .2  sp /s?  Lat 1.9 ms. Bar®.10 
counts? W®400.



138

p resen t  i s  evident from the  shape a f  the  histograms. 

Despite . . t h i s ,  i t  i s  p o ss ib le  to  f ind  the momentary r e l a t i v e  

inc rease  or dec rease  in r a t e  from one region to  another  in a 

histogram.

Comparing these  r e s u l t s  to  the r e s u l t s  of the study of 

APs due to  tone b u r s t s  superimposed on 100 Hz ( f ig u re  3 .14 ) ,  

i t  i s  seen th a t  the maxima of masking in the  AP case 

coincide with the  maxima of masking in the s ing le  f i b e r  

case .  Assuming th a t  these  experiments -  masking by LF tones 

of AP due to  tone b u r s t s  and suppress ion  by LF tones of un i t  

a c t i v i t y  due to  continuous CF tones -  are  opera t ing  on the 

same mechanisms in the coch lea ,  i t  i s  demonstrated th a t  both 

masking per iods  in  the AP case are caused by suppression of 

a c t i v i t y  a t  the s ing le  u n i t  l e v e l ,  and not by a lack of 

synchrony due to  e x c i t a t i o n  caused by the 100 Hz tone.

GaussIan-shaped impulses were p resen ted  in s tead  of 100 

Hz tones in experiments of the  same kind as j u s t  desc r ibed .  

The r e s u l t s  a re  s im i la r  to  the r e s u l t s  with 100 Hz tones.  

The Gaussian impulses are  not as  e f f e c t iv e  maskers as are 

the 100 Hz to n es .  Figures. 3 .40 t o  3.43 show some examples 

of a c t i v i t y  of f i b e r s  responding to  a tone a t  CF, modulated 

by Gaussian-shaped Impulses. As a r u le  the maximum of 

masking takes p lace  both in the. in fe r re d  SV displacement and 

ST displacement.  As in  the  100 Hz s tudy ,  Increase  in  level  

of the impulse w i l l  produce more masking in the in f e r r e d  SV 

d i r e c t io n  of BM movement. This may be a r e f l e c t i o n  of the
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Figure  3 .40  Responses o f  a u d i to ry  f i b e r s  t o  a 
continuous tone a t  CF p resen ted  toge the r ,  w ith  a Gaussian 
impulse.  Continuous curves*.BM movement a t  t h e  p la c e  of  
in n e rv a t io n  of  the f i b e r  as e x c i t a t i o n  t a k e s  p l a c e ,  
i n f e r r e d  from RW CM, s h i f t e d  t o  r i g h t  by th e  l a te n c y  of  
the  f i b e r .  Note s i m i l a r i t y  with  100 Hz e f f e c t*  In B two 
peaks ,  on each s ide  of  the  time of  maximum SV 
disp lacem ent I in  E, t o t a l  suppress ion  in  ST. Dashed 
l ine*  Approximate le v e l  of a c t i v i t y  of f i b e r  d r iv en  by 
the  CF tone p resen ted  a lone .  Unit A84-1* CF 5 .5  kHz* SR 
26 sp /s*  Lat 1.5 ms. Bar=lO counts* N»400.
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Figure 3.41 Responses o f  a u d i to ry  f i b e r s  t o  a 
continuous tone a t  CF p resen ted  to g e th e r  w ith  a Gaussian 
impulse. Continuous curves* BM movement a t  t h e  p lace  of
inne rva t ion  of  the  f i b e r  as  e x c i t a t i o n  t a k e s  p la c e ,
i n f e r r e d  from RW CM, s h i f t e d  t o  r i g h t  by the  l a t e n c y  of
the  f i b e r .  Traces B to  D fo r  condensation im pu lses ,  G+f 
t r a c e s  E to  G fo r  r a r e f a c t io n  impulses G-. Unit  84-7» 
CF 2 .2  kHzt SR 3 s p / s ;  La t .  2 .2  ms. Bar^.10 coun ts l
N=400.
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Figure  3.42 Responses of an a u d i to ry  f i b e r  t o  a 
cont inuous tone a t  CF p resen ted  to g e th e r  w i th  a Gaussian 
condensat ion  impulse.  Bottom t rac es  BM movement a t  th e  
p lace  of in n e rv a t io n  of the  f i b e r  a s  e x c i t a t i o n  ta k e s  
p la ce ,  i n f e r r e d  from RW CM, s h i f t e d  to  r i g h t  by the  
la te n c y  of the  f i b e r .  Unit  84-5? CF 5 .5  kHz* SR 20 
sp /s*  Lat 1.9 ms. Bar=10 counts ;  N«*400.
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Figure  3.43 Responses of an au d i to ry  . f ibe r  ( th e  same 
. . f ib e r  as in  f ig u re  3.41) to  a cont inuous tone a t  CF 

p resen ted  to g e th e r  with  a Gaussian r a r e f a c t i o n  impulse. 
Note the masking in  SV, fo r  h igher  l e v e l s  o f  th e  impulse
( t r a c e s  E, F, G a t  1.3 ms). Bottom t r a c e s  BM movement a t
the  p lace  of inne rv a t io n  of  th e  f i b e r  as  e x c i t a t i o n  
takes  p la c e ,  i n f e r r e d  from RW CM, s h i f t e d  t o  r i g h t  by
the  la ten c y  of the  f i b e r .  Unit 84-51 CF 5 .5  kHz; SR 20
s p / s ;  Lat 1.5 ms. Bar*10 counts ;  N*400.
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same mechanism th a t  masks the a c t i v i t y  due to  the CF tone in 

SV in the 100 Hz tone experiment.

A d i f f e re n c e  in e f f e c t  between a Gaussian masker and a 

continuous s in u so id a l  masker was shown to  e x i s t  in the AP 

case.  Figures 3.18 and 3.19 showed t h a t  most masking was 

a t t a in e d  in an. ST displacement of the BM preceded by a SV 

displacement.  The da ta  p resen ted  here are  not s u f f i c i e n t  to  

decide whether t h i s  e f f e c t  i s  to  be seen a t  the s in g le  f i b e r  

l e v e l ,  but  some h in t s  are  ava i lab le*  In f ig u re  3.43 i t  is  

seen t h a t  the  suppression i s  t o t a l  a t  around 8 ms in t r a c e

D. This corresponds t o  a d e f l e c t io n  of  the BM towards ST 

preceded by a SV . d e f l e c t i o n .  S im i la r ly ,  in f igu re  3.43 

t r a c e  B has a more pronounced suppression a t  8 .5  ms ( the ST 

a f t e r  SV displacement)  than the cou n te rp a r t  for  a Gaussian 

condensation impulse, f igu re  3 .42 t r a c e  E a t  6 and JO ms.

In most examples of LF tones p resen ted  to g e th e r  with CF 

tones ,  th e re  appears t o  be an enhancement of a c t i v i t y  in the 

phase o f  in f e r r e d  t r a n s i t i o n  of the BM from SV to  ST and ST 

to  SV. Whether t h i s  i s  a t rue  enhancement or merely a 

r e d i s t r i b u t i o n  of the f i r i n g  p r o b a b i l i t y  can only be decided 

by more q u a n t i t a t i v e  da ta  on spike count .  Also in most 

examples, th e re  seems to  be a genera l ized  suppress ion  of 

u n i t  a c t i v i t y  in a l l  phases but the  SV to  ST phase of BM 

motion fo r  s u f f i c i e n t l y  high i n t e n s i t i e s  of the LF tone .  

The SV to  ST phase i s  not masked except fo r  high le v e l s  of 

the LF tone .  Note th a t  t h i s  i s  the  phase where In the AP



144

case ,  the responses due to  tone b u r s t s  were l e a s t  a f fec ted  

by the LF tone ( f ig u re s  3 .18 ,  3.19 and 3 .2 0 ) .
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. CHAPTER 4 

DISCUSSION

The r e s u l t s  of the experiments descr ibed  in Chapter 3 

show c e r t a in  c h a r a c t e r i s t i c s  of the coch lear  responses th a t  

have not been revealed- befo re .  Aside from these  new 

f in d in g s ,  da ta  from whole nerve ac t ion  p o t e n t i a l s  and s ing le  

u n i t  responses are  c o n s i s te n t  with each o th e r ,  and in 

agreement with the  r e s u l t s  of o th e r  in v e s t i g a t io n s .  In 

s ec t io n  4.1 a comparison i s  made between our r e s u l t s  and the 

r e s u l t s  o f .  s im i la r  experiments by o th e r s .  Section 4.2 

d esc r ib es  c u r ren t  views of h a i r  c e l l  e x c i t a t i o n .  In sec t ion  

4 .3  sp ecu la t io n s  are presen ted  on the  p o s s ib le  mechanisms 

underlying the r e s u l t s  of our experiments .

4 . I Comparison of d a ta .

The. most prominent r e s u l t s  of t h i s  research  are 

summarized in  f ig u re  4 .1 .  Here a summary of the main 

f in d in g s  in Chapter 3 and comparison to  o the r  a v a i la b le  data  

a re  p resen ted .

A) Action p o t e n t i a l s  due t o  low frequency s t i m u l i .

In s e c t io n  3.3A i t  was demonstrated t h a t  the AP 

e l i c i t e d  by a low frequency s t im ulus  can be c o r r e l a t e d  with 

the occurrence of  the negative peak in the RW CM. The AP

occurs 2.1 to  3 .2  m il l i seconds  a f t e r ,  t h i s  negative 

d e f l e c t io n .  The CFs of the f i b e r s  t h a t  mainly co n t r ib u te  to
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Figure  4.1 Comparison of d a t a .  A. I n f e r r e d  BM 
movement a t .  p lace  of  in n e rv a t io n .  Here 100 Hz was 
used ,  but r e s u l t s  apply fo r  a  wider range- (50 t o  200 
Hz). B. Regions with hatching, in d ic a t e  where s in g l e  
u n i t  d isch a rg es  a re  assumed t o  occur,  de r iv ed  from AP 
d a t a .  C. P r e f e r r e d  phase o f  s in g le  u n i t  responses  
due t o  100 Hz p resen ted  a lo n e .  D. P re fe r r e d  phase of  
single, u n i t  responses  due t o  a tone  a t  CF p re se n te d  
to g e th e r  w ith  a .tone a t  JQQ Hz. The lower h a tch in g  
a rea  in d i c a t e s  th e  reg ion  where the  secondary phase o f  
suppress ion  occurs as the  LF tone l e v e l  i s  i n c r e a s e d .
E. Level of  tone b u r s t  t o  r e s t o r e  s iz e  of AP, a s  t h i s  
AP i s  masked by the  presence of a LF tone ( s e c t i o n  
3 .3B),  i . e .  more masking i s  up in  d iagram. F. 
Zw icker 's  (1977) psychoacoustic  da ta  fo r  20 Hz, f o r  
comparison. I t  has been sca led  in  time and s h i f t e d  t o  
comply with Zwicker-'s assumption on the  BM movement 
(see  f ig u re  1 .4 ) .
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the AP are not  known. Therefore ,  assuming th a t  the la tency 

of the f ib e r s  was in the i n t e rv a l  I . ]  to  3 .5 ms, we 

concluded th a t  f i b e r s  were exc i ted  in the i n t e rv a l  -1 .4  to

2.1 ms around the displacement of the BM towards ST. This 

i n t e rv a l  i s  shown in f ig u re  4 .1 B. S im ila r  conclusion was 

a r r iv e d  a t  by Eldredge in 1976. He found th a t  best  

c o r r e l a t io n  with CM was gotten  by r e l a t i n g  the time of 

occurrence of the AP to  the p o s i t iv e  peak of the  DIF CM 

(equ iva len t  t o  the nega t ive  peak of  RW CM). The AP occurred 

in  the i n t e rv a l  I . I  to  1.4 ms a f t e r  the sa id  p o s i t iv e  peak 

d e f le c t io n  o f  the DIF CM. Eldredge used J,low pass  400 Hz 

c l i c k s 41, a l so  known as thumps. These s t im u l i  produce a 

p a t t e r n  of CM s im i la r  to  the Gaussian pulses  used in the 

p re se n t  work, the d i f fe re n ce  being mainly th a t  the low pass 

c l i c k s  were s h o r te r  than  the .10 ms Gaussian impulses ( the 

maximum and minimum CM occurred a t  an i n t e rv a l  of 1.4 ms, 

whereas fo r  the 10 ms Gaussian t h i s  i n t e rv a l  was 2.3 ms). 

The thumps most probably s t im ula ted  higher  CF f ib e r s  than 

d id  th e  Gaussian pu lses  used here .  Figure 4 .2  i s  from the 

work of Eldredge, showing the time of occurrence of the AP 

fo r  d i f f e r e n t  types of low pass c l i c k s .

B. Unit a c t i v i t y  due to  LF s t im u l i .

A dichotomy o f  f i r i n g  time was shown to  e x i s t  between 

low and high CF f i b e r s .  Low CF f i b e r s  f i r e d  around 9.7 ms» 

high CF f ib e r s  f i r e  a t  6.1 ms a f t e r  the BM i s  in fe r re d  to  be 

a t  the zero c ross ing  movement from ST to  SV, due to  a 100 Hz
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Figure 4 .2  Action p o t e n t i a l s  e l i c i t e d  by thumps o f  
d i f f e r e n t  d u r a t io n ,  go t ten  by lo w -p a s s . f i l t e r i n g  
c l i c k s .  Note the  small v a r i a b i l i t y  in  t h e  time, o f  
occurrence of the AP as r e l a t e d  t o  the  time o f  
p o s i t i v e  peak o f  CM (corresponding t o  n e g a t iv e  peaks 
in  RW CM t r a c e s ) .  In r a r e f a c t i o n  d a ta  t h e  s t a r t  of  
the nega t ive  going CM was used a s  r e fe ren ce  
t im e.Traces  marked with d e l t a  r e p re se n t  th e  p o r t i o n  of  
the AP t h a t  i s  e l im ina ted  i f  a 6 kHz high pass  no ise  
i s  p resen ted  to g e th e r  with the  c l i c k .  (From Eldredge 
1976).
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tone ,  a s  seen in f ig u re  3 .27 ,

The da ta  presen ted  in f ig u re  3 .27 ,  and showed 

schem atica l ly  In f ig u re  4.1C, agree with the data  of Konishi 

and Nielsen (1973, 1.978) only in an expanded in te rp re ta t io n *  

Whereas these r e se a rch e rs  found most f i b e r s  to  be exc i ted  by 

a d e f l e c t io n  of the BM towards sca la  tympani, f igu re  3.27 

in d ic a te s  t h a t  f i b e r s  seem to f i r e  anywhere except at  the 

time of in f e r r e d  SV displacement of the BM. Sokolich e t  a l .  

(1976) presented  r e s u l t s  in genera l  agreement with the ones 

presen ted  in f ig u re  3.27* F ibers  of low CF increase  the 

f i r i n g  during motion of the BM from ST to  SV. F ibers  of 

medium CF showed reversed  p o l a r i t y ,  i . e .  they f i r e d  in the 

in fe r re d  SV to  ST motion of the BM. F ibe rs  of high CF 

ten d ed . to  f i r e  in both v e lo c i ty  maxima of BM motion, from ST 

to  SV and from SV to  ST.

C. Comparison between A and B.

The APs due to  LF tones should have c o r r e l a t e s  a t  the 

s in g le  u n i t  l e v e l .  The aud i to ry  nerve f i b e r s  show d e f i n i t e  

p reference  of phase of f i r i n g  to  low frequency s t im u l i ,  as 

i s  evident from the  above d a t a ,  but the p a r t i c u l a r  phase of 

f i r i n g  seems to  depend not only on the BM movement, but on 

the type of low frequency s t im u lus ,  i t s  i n t e n s i t y  and the CF

of the f i b e r .  Other important f a c to r s  may be the

phys io log ica l  condi t ion  of the cochlea ,  adap ta t ion  e f f e c t s  

and pas t  h i s t o r y  of s t im u la t io n .  Any and a l l  of those
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f a c to r s  may have co n t r ib u ted  to  the spread of maximum 

a c t i v i t y  observed in f ig u re  3 .2 7 .

A r igo rous  demonstration t h a t  the APs have c o r r e l a t e s  

a t  the s ing le  u n i t  leve l  i s  not p o ss ib le  on the  b as is  of the 

av a i la b le  d a t a .  We can only s t a t e  t h a t  the r e s u l t s  are  not

in c o n f l i c t  * S ingle  u n i t s  do not f i r e  as the BM i s  d isp laced

towards SV ( f ig u re  3.27) but f i r e  in o the r  phases of the LF 

s t im u lus .  whereas whole nerve ac t io n  p o t e n t i a l s  are

genera ted  as the BM i s  d isp laced  towards ST (-.1.4 to  2.1 ms

around maximum ST d isp lacem ent) .

D) APs due to  tone b u r s t s  inf luenced by LF s t im u l i .

A low frequency s t im ulus  w i l l  suppress the AP due to  a 

tone b u r s t ,  as the tone b u r s t  i s  superimposed on c e r t a in  

phases of  the LF to n e . .  This suppression i s  a s t a b le  and 

p re d ic ta b le  func t ion  of the  BM movement. This was shown in 

s e c t io n  3.3B, and i s  shown schem atica l ly  in f ig u re  4 . IE. 

The genera l  f in d in g  i s  t h a t  the LF stimulus w i l l  mask the AP 

due to  the tone b u rs t  when: t h i s  s t imulus d isp lace s  the BM 

towards e i t h e r  SV or ST, the ST d e f l e c t io n  being more 

e f f e c t i v e  in masking the  AP. The AP study in sec t io n  3.3B 

on tone b u r s t s  superimposed on LF s t im u l i  i s  a l s o  in general 

agreement with the work of Eldredge (1976). He performed an 

experiment using thumps, s im i la r  to  our Gaussian impulses, 

and c l i c k s  as the st imulus fo r  e l i c i t i n g  APs, in the same 

fashion as shor t  tone b u r s t s  were used in the p resen t  s tudy.
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The r e s u l t s  a re  p resen ted  In f igu re  4 .3 .  Both negative  and 

p o s i t iv e  d e f l e c t i o n s  of the CM due to  the thump correspond 

in time to  the masking of the  AP produced by the c l i c k ,  when 

higher  le v e l s  of the thumps are used. The l ine -up  of 

maximum CM and maximum masking in E ldredge 's  experiment 

( f ig u re  4.3)  i s  not as ev ident  as in the  experiments with 

Gaussian impulses ( f ig u re s  3.18 and 3 .19 ) .  This i s  because 

the thumps were cons iderab ly  s h o r t e r  than the Gaussian 

impulses,  making small d ev ia t io n s  in time more apparen t .

A r a th e r  important d iscrepancy i s  t o  be seen, however, 

w ithin  E ld redge 's  d a t a ,  and when one a t tem pts  to  c o r r e l a t e  

i t  with ours* In the case of a condensation thump, the 

maximum of masking occurs as the  DIF CM i s  nega t ive ,  which 

we i n f e r  to  be the phase where the BM i s  d isp laced  towards 

SV. In our da ta  and in E ld redge 's  experiment with 

r a r e f a c t io n  thumps, maximum masking occurs in the  in fe r re d  

ST d i r e c t io n  of the BM movement. The l a rg e r  masking 

produced by a condensation thump in  SV can be due to  the 

asymmetry of the thump* The second d e f l e c t io n  of the  CM is  

la rg e r  than the  f i r s t ,  g iv ing  la rg e r  masking both in the 

condensation and r a r e f a c t io n  ca se s .

S e l l i c k  e t a l .  (1981) demonstrated the same masking 

e f f e c t  by LF tones on APs due to  tone b u r s t s  in  guinea p ig s .  

They used tone b u r s t s  superimposed on 40 Hz s in u so id s ,  and 

found the  masking in the  in fe r re d  ST displacement of the BM 

to  be l a rg e r ,  as in  our d a ta .
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CONDENSATION RAREFACTION
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Figure  4 .3  Inf luence  o f  thumps on APs e l i c i t e d  by 
c l i c k s .  Two. l e f t  jcolumns a re  f o r  condensat ion thumps, 
two r i g h t  columns fo r  r a r e f a c t i o n  thumps. CM graph i s  
from d i f f e r e n t i a l  e l e c t r o d e s ,  t h e re fo re  a p o s i t i v e  
d e f l e c t i o n  corresponds to  i n f e r r e d  BM movement towards 
s c a la  tympani. In d iv id u a l  d a t a  a r e  from 
r e p r e s e n t a t i v e  e a r s .  The d isc repancy  between th e se  
d a ta  and the  AP da ta  of s e c t io n  3.3B i s  seen in  th e  
condensat ion ca se ,  where an in fe r re d ,  d isp lacem ent  of  
the  BM towards SV g ives  l a r g e r  masking than
displacement towards ST. (From Eldredge 1976).
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E) F iber  responses to  CF tones in f luenced  by LF s t im u l i .

When a continuous tone a t  CF i s  presented  toge the r  with 

a low frequency s t im u lus ,  the aud i to ry  f i b e r s  respond in a 

conspicuously homogeneous fash ion ,  as evidenced in f igure  

3.33 and schematized in f igu re  4. ID. At a moderate 

i n t e n s i t y ,  the  f i r s t  e f f e c t  of a low frequency stimulus on 

the a c t i v i t y  of a f i b e r  due to  a CF tone i s  a supress ion  of 

t h i s  a c t i v i t y  in the in f e r r e d  ST displacement of the BM. If 

the level ,  of  the  LF tone i s  inc reased ,  or i f  the level  of 

the CF tone i s  decreased ,  another  suppression area i s  seen, 

in the in f e r re d  SV. displacement phase of the BM (f igu re  

3 .3 4 ) .  High lev e l  LF tones have a genera l  suppression 

e f f e c t  on the a c t i v i t y  due to  CF, but. t h i s  suppression i s  

l e s s  prominent a t  the time of in fe r re d  zero c ross ings  of the 

BM. Higher levels ,  of th e  CF tone would probably suppress 

the a c t i v i t y  completely,  unless  the LF tone by i t s e l f  

produced a response .  All the f i b e r s  t e s t e d  d isp layed  very 

s im i la r  p a t t e r n s ,  independent of . the ir  CF. The in f luence of 

the LF tone on the f i b e r ' s  f i r i n g  due to  the CF tone seems 

th e re fo re  to  be a well  behaved func t ion  of b a s i l a r  membrane 

motion.

Results  s im i la r  to  these were obtained by S e l l i c k  et  

a l .  (1981), fo r  high CF u n i t s .  They used a continuous tone 

a t  CF and a 40 Hz LF tone .  Sachs and Hubbard (1981) 

repor ted  the  same e f f e c t  in  the  c a t .
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As mentioned in Chapter 1, Romahn and Boerger (1978) 

s tud ied  s in g le  u n i t  r e sponses , using b a s i c a l l y  the same 

paradigm as  the  one used in the AP study of s e c t io n  3.3B.

They found no modulation to  be p resen t  in a la rge  majori ty

of the f ib e r s  (93%), in sharp c o n t r a s t  to  our m a te r ia l ,  and 

a l so  to  th a t  of e .g .  Sachs and Hubbard (1981), where

modulation of the response to  a continuous CF tone by a LF 

tone i s  seen in over 90% of the cases .  A poss ib le

explanation i s  t h a t  these  r e se a rch e rs  used LF tones of lower 

leve l  than ours ,  or CF tone b u r s t s  of h igher  l e v e l .  I t  i s  

a l so  conceivable t h a t  the behavior of the cochlea i s  very 

d i f f e r e n t  for  continuous tones (used in the  p resen t  work) 

than i t  i s  fo r  pulsed tones (used by Romahn and Boerger) . 

However, the da ta  on APs to  tone b u r s t s  masked by LF s t im uli

shows th a t  the  AP to  a tone bu rs t  i s  s t rong ly  masked in

c e r t a in  phases of a LF tone presen ted  simultaneously  with 

the tone b u r s t .

F) Comparison between D and E.

The agreement between the; behavior of the  masking areas  

found In the  AP study of .section 3.3B and the s in g le  u n i t

study of s e c t io n  3.4B i s  remarkably good* The maximum

masking of the AP due to  the  tone bu rs t  occurred in the 

in fe r re d  displacement of the BM (by the LF st imulus)  towards 

ST. As in t e n s i t y  of the  LF tone was inc reased ,  a secondary 

masking region appeared in the SV displacement of the  BM. 

Eguivalent r e s u l t s  were obtained in the s in g le  f i b e r  study.
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where suppression of f ib e r  a c t i v i t y  occurred in the same 

phases of the BM movement as the masking in the AP study.

The LF s timulus enhances the f i b e r  a c t i v i t y  due to  a CF 

tone the phase of t r a n s i t i o n  of the  BM between maximum 

displacements towards e i t h e r  s c a la .  I t  i s  not p o s s ib le  from 

the p resen t  data  to  determine whether t h i s  i s  a t rue  

enhancement, i . e .  whether the average f i r i n g  ra te  

Inc reases ,  or i f  i t  i s  a r e d i s t r i b u t i o n  of the a c t i v i t y  from 

suppression i n t e r v a l s  to  enhancement i n t e r v a l s ,  without 

inc reas ing  a c t i v i t y .

As s ta te d  in Chapter 3, the good c o r r e l a t i o n  between 

the events  a t  the AP level  and a t  the  s in g le  u n i t  leve l  i s  

assumed to  be a demonstration th a t  the two masking peaks in 

the AP occur because of  suppress ion a t  the s ing le  f i b e r  

l e v e l ,  not because of r e f r a c t o r i n e s s ,  e x c i t a t i o n ,  or lack of 

synchrony of the f i b e r s .

A le g i t im a te  c r i t i c i s m  of the p a r a l l e l s  t h a t  have been 

drawn between the  experiments above i s  the ques t ion  of the 

dynamic versus s t a t i c  behavior of the aud i to ry  f ib e r  

responses.  The s ing le  f i b e r  experiments were performed with 

continuous tones a t  CF whereas the AP study employed shor t  

tone b u r s t s .  Many experiments in d ic a te  a d i f f e r e n t  behavior 

of s ing le  f i b e r s  t o  the  onset of a tone burs t  from th a t  of a 

steady s t a t e  tone .  Kiang e t  a l .  (1965) described, the onset 

response for  tone b u rs t s  and noise b u r s t s .  The histograms 

s t a r t  with a sharp peak a t  the onset of the  response.
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decaying to  a steady s t a t e  in J00 to  200 ms. This peak is  

l e s s  prominent for  b u rs t s  o f  lower i n t e n s i t y .  S im i la r ly ,  

Smith and Brachman (1980) showed th a t  f i b e r s  have a la rg e r  

dynamic range when, t h i s  range i s  c a lc u la te d  from responses 

to  modulated tones ,  than when c a lcu la te d  merely by changing 

the leve l  of  continuous tones .  In o the r  words, when the 

maximum discharge r a t e  was sub t rac ted  from the minimum 

discharge  r a t e  within the  per iod  of modulation, t h i s  

d i f fe ren ce  was la rg e r  than when the d ischarge  r a t e s  were 

obta ined d i r e c t l y  from a steady s t a t e  d ischarge  r a t e  due to  

a CF tone of i n t e n s i t y  equ iva len t  to  the maxima and minima 

of the  modulated CF tone .

These d i f f e r e n c e s  between the behavior of s ing le  

aud i to ry  f i b e r s  to  continuous versus pulsed s t im u l i  in d ica te  

t h a t  caution  should be used when comparing the  AP data  

(pulsed s t im u l i )  with the s in g le  f ib e r  da ta  (continuous 

s t i m u l i ) .  A common, mechanism behind the good agreement 

between the phase of  masking in the AP study and the 

suppression in  the  s ing le  f i b e r  study i s  th e re fo re  suggested 

but not proven.

G) Psychoacoustic c o r r e l a t e s .

The r e s u l t s  of the AP study in  sec t ion  3.3B are in good 

q u a l i t a t i v e  agreement with the psychoacoustic  da ta  of 

Zwicker (1977). A masking of the  probe tone occurs in one 

phase of  the  low frequency stimulus th a t  i s  presented
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toge the r  with the probe tone .  Another smaller  masking 

region appears a t  the opposite  phase of the  LF tone ,  as the 

le v e l  of the LF tone i s  inc reased .  From co ns ide ra t ions  of 

the s iz e  of the he l ico trem a and the c o r r e l a t i o n  of masking 

p a t t e rn  with the second d e r iv a t iv e  of  the sound pressure  of 

a 20 Hz s in u s o id a l ,  Zwicker concluded th a t  the  la rge  masking 

peak .corresponded with a displacement of the BM towards ST 

and the small one with displacement towards SV. Although a 

more d i r e c t  proof of the  phases of BM movement for  humans i s  

d e s i r a b l e ,  e .g .  by CM measures, the  phases of masking 

in fe r re d  by Zwicker are  in f u l l  agreement with the phases 

in f e r r e d  in the  AP study of  s e c t io n  3.3B.

Figure 4.1 summarizes the r e l a t i o n s  found between the 

various r e s u l t s  p resen ted  above. A 100 Hz s inusoid  i s  used 

in the  example, but Gaussian impulses or s inuso ids  of 

frequency between 50 and 200 Hz give comparable r e s u l t s .  

Some of the r e s u l t s  of our experiments cannot be explained 

with commonly held yiews on the mechanisms of h a i r  c e l l  

e x c i t a t i o n  t h a t  are  p resen ted  in the next s e c t io n .  Perhaps 

the most in t r i g u i n g  f ind ing  i s  th a t  f i b e r s  are  in h ib i te d  to  

f i r e  in the BM. d e f l e c t io n  towards SV due to  a low frequency 

tone p resen ted  a lone ,  whereas they a r e . in h ib i t e d  to  f i r e  in 

the ST d e f l e c t io n  of the BM, when a CF tone i s  p resented  

toge the r  with a LF tone .
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4.2  Current views of underlying mechanisms.

Here a b r i e f  review i s  made of some contemporary 

not ions  on the mechanisms fo r  inner  h a i r  c e l l  d ep o la r iz a t io n  

t h a t  leads to  spike i n i t i a t i o n .  The r e s u l t s  of the 

experiments d esc r ibed  in Chapter 3, on the  phase of 

suppression and masking, are  only p a r t i a l l y  support ive  of 

the p resen t  ideas on the phase of h a i r  c e l l  d e p o la r i z a t io n .

Current views on the mechanisms of h a i r  c e l l  

d e p o la r iz a t io n  are shaped by the  work of many in v e s t i g a to r s ,  

such as Oavis (1965), S t r e l i o f f  e t  a l .  (1976), Honrubia et 

a l .  (1976), Manley (1978),  and Russel l  and S e l l i c k  (1980), 

and the  knowledge of the anatomy of the organ of C o r t i .  Our 

opinion on the r e l a t i o n  between BM movement and c e l l  

d e p o la r iz a t io n  i s  thus as follows*

I t  i s  assumed t h a t  inner  h a i r  c e l l s  can be depolar ized  

by two means* e l e c t r i c a l  and mechanical. Honrubia et a l .  

(1976) summarize t h e i r  views of a c o u s t i c a l  and e l e c t r i c a l  

in t e r a c t i o n s  in f ig u re  4 .4 .  They based t h e i r  hypothesis  on 

the responses of nerve f i b e r s  inne rva t ing  the  l a t e r a l  l ine  

of Xenopus la ev is  (see f igu re  1 .8 ) ,  where c e l l s  are 

depolar ized  by mechanical displacement r a th e r  than v e lo c i ty .

Figure 4 .5  shows the in fe r re d  phase of d e p o la r iz a t io n  

due to  mechanical s t im u la t io n .  The c i l i a  of the IHCs, i t  i s  

assumed, do not con tac t  the t e c t o r i a l  membrane. Dallos e t  

a l .  (1972) show th a t  regions dep le ted  of OHCs have
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Figure  4.4. Theory of  a c o u s t ic a l .  versus  e l e c t r i c a l  
s t im u la t io n  of  h a i r  c e l l s .  Note the  d i f f e r e n c e  in  the  
p o l a r i t y  of  the  SM voltage change ( i . e .  EP change) 
t h a t  produces au d i to ry  nerve a c t i v i t y .  (From Honrubia 
e t  a l .  1976).
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responses p ropo r t iona l  to  the v e lo c i ty  of the BM. S e l l ick  

and Russell  (J980) f ind  a d e r iv a t iv e  r e l a t i o n s h i p  between CM 

and inner  h a i r  c e l l  i n t r a c e l l u l a r  p o t e n t i a l .  These data 

suggest t h a t  indeed inner  h a i r  c e l l s  are  v e lo c i ty  d e t e c t o r s ,  

the explanat ion  being th a t  the c i l i a  are  maximally d isp laced  

when the f l u id  surrounding them has a maximum f lu x .  

Considering the d i r e c t io n  of b a s i l a r  membrane movement ( e .g .  

Flock 1971), one concludes th a t  d e p o la r iz a t io n  due to  

mechanical forces  takes place in the ST to  SV maximal 

movement of the BM ( f ig u re  4.5D). This p o l a r i t y  i s  

supported by the r e s u l t  of experiments by Dallos e t  a l .  

(4972), and S e l l i c k  and Russell  (1980).

As fo r  the  e l e c t r i c a l  s t im u la t io n  of inner  h a i r  c e l l s ,  

i t  seems t h a t  -the following reasoning i s  most compatible 

with known fac ts*  Outer h a i r  c e l l s  produce most of  the 

e x t r a c e l l u l a r  cochlear  microphonic and summating p o te n t i a l s  

(Dallos and Cheatham 1976). Several  re sea rchers  be l ieve  

th a t  the  changes in the  endocochlear p o te n t i a l  produced by 

OHC may inf luence  the  IHCs.. In the case of the  cochlea,  

OHCs produce a change in EP th a t  may be sensed by the IHCs 

in a phase represen ted  in  f ig u re  4.5B, producing a 

d e p o la r iz a t io n  as in f igu re  4.5C.

S t r e l i o f f  e t  a l .  (1976) propose the  IHC-OHC 

in t e r a c t i o n  to  be as follows* The s t r i a  v a s c u la r i s  produces 

the  EP represen ted  by VS ( l e s s  the drop across  Ra) in f igu re  

4 .6 ,  t h a t  toge the r  with the i n t r a c e l l u l a r  h a i r  c e l l
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Figure  4 .5  Current  views o f  under ly ing  mechanisms f o r  
IHC d e p o l a r i z a t i o n .  Movement of  the  BM a t  the
lo c a t io n  o f  the  IHC. Bl EP change ( i . e .  the  CM in  
the  sca la  medial t h a t  f l u c t u a t e s  the  p o t e n t i a l  above 
the  c u t i c u l a r  p l a t e  o f  the  IHC. C. IHC's 
i n t r a c e l l u l a r  p o t e n t i a l  f l u c tu a t io n  due t o  th e  EP. 0 .  
IHC's i n t r a c e l l u l a r  p o t e n t i a l  f l u c t u a t i o n  due to  
mechanical s t im u la t io n  of c i l i a  by f l u i d  f l u x .  E. 
Expected phase fo r  IHC d e p o la r i z a t io n  due t o  C and D.
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Figure  4 .6  A p o s s i b le  i n t e r a c t i o n  between in n e r  and 
o u te r  h a i r  c e l l s  i s  v ia  the  endocochlear  p o t e n t i a l .  
The s t r i a  v a s c u la r i s  produces a c u r r e n t  t h a t  flows 
through th e  h a i r  c e l l s .  Rs being r e l a t i v e l y  l a r g e ,  
m ainta ins  the t o t a l  cu r ren t  approximately  c o n s ta n t  and 
the h a i r  c e l l s  have to  share i t .  This  share  i s  
a c t u a l l y  mediated by the  change in  the  EP. (From 
S t r e l i o f f  e t  a l .  1976).
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p o te n t i a l  VH d r iv e s  current,  through the h a i r  c e l l s .  The 

numbers in d ic a te  p red ic ted  r e l a t i v e  d i s t r i b u t i o n  of cu r ren ts  

based on measurements of r e s i s t i v i t y  between various scalae 

and on the  assumption t h a t  only OHCs change t h e i r  

r e s i s t i v i t y  with  the s t im u lus .  This assumption would be 

approximately t r u e  for  f requenc ies  well below the CF, given 

t h a t  IHC have t h e i r  c i l i a  f ree  from the t e c t o r i a l  membrane. 

This i s  so because a t  low f req u en c ie s ,  the v e lo c i ty  of the 

f l u i d  surrounding the IHC c i l i a  t s  sm all ,  and the IHCs are 

in f luenced  only by the changing e l e c t r i c a l  f i e l d  due to the 

OHCs.

Maximum d e p o la r iz a t io n  of the  IHC due to  the mechanical 

s t im u la t io n  of the c i l i a  w i l l  be in the ST to  SV v e lo c i ty  

phase of the BM movement I maximum d e p o la r iz a t io n  of the IHC 

due to  e l e c t r i c a l  in f luence from the  OHC w il l  be in the 

phase of maximum displacement of the BM towards ST, since 

the EP i s  maximum in t h a t  phase. Depending on the s ize  of 

each of these  two f a c t o r s ,  the maximal d e p o la r iz a t io n  of the 

may a t  var ious  lo c a t io n s  w ith in  the c y c le .  Figure 4.5E 

in d ic a te s  the phase range where d e p o la r iz a t io n  might be 

expected. The time 2 .5  to  5 ms i s  then never expected to  be 

d ep o la r iz in g .

When a tone a t  CF i s  p resen ted  to g e th e r  with  a LF tone,  

the d e p o la r iz a t io n  of the  inner  h a i r  c e l l  should be a l in e a r  

sum of the e f f e c t  of each tone ,  i f  the above scheme is  

c o r r e c t .  The data  in Chapter 3 show c l a r l y  t h a t  t h i s  i s  not
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the case .  A mechanism to  explain  t h i s  i s  suggested in the 

next s e c t io n .

4.3  Physio logica l  b a s is  fo r  the  r e s u l t s .

The scheme portrayed  in .section 4 .2  fo r  d ep o la r iz a t io n  

i s  not s u f f i c i e n t  to  explain  a l l  the da ta  from our 

experiments .  The r e s u l t s  of the experiments with low 

frequency s t im u l i  p resen ted  alone are in genera l  agreement 

with the scheme presen ted  in sec t ion  4 .2 ;  however, th e re  i s  

a c o n f l i c t  between the scheme and r e s u l t s  of experiments 

p resen t ing  CF tones and LF tones to g e th e r .

A) Low frequency s t im u l i  p resen ted  a lone .

In the case where a low frequency tone i s  presented 

a lone ,  f i b e r s  show a tendency to  f i r e  in  the t r a n s i t i o n s  of 

the BM movement from SV to  ST and ST to  SV. The spread of 

p r e fe r re d  phase of f i r i n g  i s  obvious but so i s  the lack of 

f ib e r s  f i r i n g  as the BM i s  d isp laced  towards SV. The scheme 

above can r e a d i ly  expla in  the l a t t e r *  The LF tone w i l l  cause 

a more negative EP to  occur in  the  phase of the  BM 

. displacement towards SV, as. t h i s  i s  the phase of OHC 

d e p o la r i z a t io n .  This diminishes the a v a i la b le  depo la r iz ing  

cu r ren t  for  th e  IHCs, and thus f i b e r  a c t i v i t y  d ec reases .

Figure 4.5E in d i c a t e s  t h a t  no . d e p o la r iz a t io n  is  

expected in the i n t e rv a l  2.5 to  5 ms. The experiments in 

Chapter 3 ( f ig u re  3.27) show th a t  17% of the f i b e r s  f i r e d
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during t h i s  time (25% would be the expected number, assuming

random f i r i n g  phase) .  In f igu re  3.27 i t  i s  a l so  seen th a t

no f ib e r s  f i r e d  in the  i n t e rv a l  between 1.7 and 3 .7  ms. A

s h i f t  of I ms would r e lo c a te  the s i l e n t  in t e rv a l  to  overlap

the t h e o r e t i c a l  area  o f  no d e p o la r iz a t io n .  There is

th e re fo re  a time discrepancy of .10% between theory and d a ta ,

th a t  could be due to  experimental e r r o r s .  The e r r o r  could

a l so  be in the assumption made, th a t  the e x c i t a t io n  time is

found by s u b t r a c t in g  the ze ro -c ross  of the RW CM and the
*

la tency  of the  f ib e r  from the time of occurrence of the 

sp ikes  w ith in  the cycle of the LF tone (see se c t io n  3.4A).

The dichotomy of f i r i n g  of low versus high CF f ib e r s  is  

d i f f i c u l t  to  ex p la in .  Perhaps the low CF f ib e r s  f i r e  in the 

ST to  SV t r a n s i t i o n  of the BM movement because the IHCs are 

s t im ula ted  by the  v e lo c i ty  component of the BM movement. 

According to  the  scheme of h a i r  c e l l  i n t e r a c t i o n  presented  

in sec t io n  4 .2 ,  f ib e r s  of high CF, not being s t im u la ted  by 

v e lo c i ty  of a tone of frequency much lower than the CF, 

should f i r e  in the ST displacement of the BM ( f ig u re  4 . 5C). 

However, a m a jo r i ty  of the high CF f i b e r s  f i r e d  in the  SV to  

ST t r a n s i t i o n  of the BM displacement.

These r e s u l t s  are d ia m e t r i c a l ly  opposed to  the data  of 

S e l l l c k  and Russell  (1980) who found th a t  d e p o la r iz a t io n  of 

high CF IHCs takes  place in the ST to  SV phase of the BM 

movement. The explanat ion  of t h i s  apparent discrepancy 

appears e lu s iv e  a t  t h i s  t ime.
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As fo r  the APs observed when a low frequency stimulus 

was presen ted  a lone,  the  scheme of sec t io n  4 .2  I s  adequate 

to  explain the r e s u l t s  t o  the extent  th a t  APs are  generated 

in the phase of the BM d e f l e c t io n  towards ST. The reason 

fo r  t h i s  i s  probably t h a t  in the ST displacement of the BM 

th e re  i s  a p o s i t i v i t y  in sca la  media th a t  in c reases  the 

d ep o la r iz in g  cu r ren t  through the IHCs.

B) LF tones p resen ted  with CF tones .

When a CF tone was presen ted  toge the r  w ith  a LF tone a 

cons iderab ly  d i f f e r e n t  p a t t e r n  of f i r i n g  occurred ,  the most 

conspicuous aspect  of i t  being t h a t  a c l e a r  suppression of 

f i b e r  a c t i v i t y  was seen as the BM was in f e r r e d  t o  be 

d isp laced  towards ST by the LF s t im ulus .

One way to  explain  suppression of f i b e r  a c t i v i t y  as the 

BM i s  d isp laced  towards ST i s  t o  assume th a t  IHC have t h e i r  

c i l i a  a t tach ed  to  the t e c t o r i a l  membrane, and are being 

hyperpolar ized  as the BM Is  d isp laced  towards ST, but t h i s  

would be In c o n f l i c t  with our previous r e s u l t s  and those of 

e .g .  Konishi and Nielsen (1978), of the f i b e r s  f i r i n g  as 

the BM was d isp laced  towards ST when a LF tone i s  p resented  

alone.  On the  o the r  hand, the reduct ion  of f i r i n g  of f i b e r s  

to  a tone a t  CF as the BM is  d isp laced  towards SV by a loud 

LF tone can be explained by a reduct ion  in EP caused by the 

LF tone inc reas ing  the curren t  through OHCs.
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We are th e re fo r e  faced with the ta sk  of exp la in ing  how 

a displacement of the BM due to  a low frequency stimulus 

towards ST i s  able to  diminish the a c t i v i t y  due to  a tone at 

CF. The scheme of sec t io n  4 .2  p r e d ic t s  th a t  t h i s  d i r e c t io n  

of d e f le c t io n  in c re ase s  the EP and thus  the p o te n t i a l  for  

d r iv in g  cu r ren t  through the  h a i r  c e l l s ,  th e re fo re  inc reas ing  

neural  a c t i v i t y .  Thus t h i s  simple scheme does not p re d ic t  

the  observed r e s u l t s .

A l im i t a t i o n  of the  OHC's output as the BM i s  d e f le c te d  

towards. ST could exp la in  the  observed suppress ion .  Such 

n o n l in e a r i ty  i s  desc r ibed  in the  l i t e r a t u r e .  The data  of 

Nieder and Nieder (1971) and Durrant and Dallos (1974) 

showed t h a t  as the BM i s  d isp laced  maximally by a LF tone, 

the CM and SP are reduced. This reduct ion  i s  l a rg e r  in the 

ST displacement than in the SV displacement of the BM, and 

t h i s  accounts fo r  the observed l a rg e r  suppress ion of f i b e r  

a c t i v i t y  and masking of AP in the  ST displacement of the BM. 

In our data  ( f ig u re  3 .14 ,  fo r  270 degrees) a reduct ion  of CM 

is  seen in  the phase of displacement of the BM towards ST 

due to  a low frequency tone .

Hudspeth and Corey (1979) showed th a t  an asymmetry i s  

found in the change of i n t r a c e l l u l a r  p o te n t i a l  as a function  

of movement of  c i l i a .  They showed in the b u l l f ro g  sacculus 

th a t  displacement of c i l i a  away from the  kinocilium 

(equ iva len t  to  an ST d e f l e c t io n  of the BMi produces 3. times 

l e s s  change in  p o la r i z a t i o n  than an equivalen t  displacement



168

towards the k inoc i l ium , as seen in f ig u re  4 .7 .  If  i t  is  

assumed th a t  QHCs in the  cochlea respond in a s im i la r  

fashion as the  h a i r  c e l l s  in the  b u l l f ro g  saccu lus ,  and th a t  

the magnitude of s t im u l i  i s  comparable, then a n o n l in e a r i ty  

of t h i s  type could explain  the diminished CM due to  a high 

frequency tone as the  BM i s  d e f le c te d  maximally by a LF tone 

towards e i t h e r  s c a l a .  The asymmetry would exp la in  the more 

pronouced e f f e c t  seen in ST.

The sigmoid in f igu re  4 .7  can be used t o  es t im a te  the  

amount of CM produced by a CF tone when t h i s  tone i s

p resen ted  toge the r  with a LF tone .  When a CF tone d isp lace s  

the c i l i a  by a small amount, the change in p o l a r i z a t i o n  of 

the c e l l  w i l l  be p ro p o r t io n a l  to  the s lo p e ,  or  d e r iv a t iv e ,  

of the sigmoid in f ig u re  4 .7  (see lower panel of f igu re  

4 .7 ) .  A small displacement w i l l  produce a d e p o la r iz a t io n  

th a t  has an approximately l i n e a r  r e l a t i o n s h i p  to  the

displacement .  I f  the BM i s  b iased  by a LF tone towards the 

s a tu r a t io n  p o in t s ,  the  CM produced by a CF tone th a t  i s  

p resen ted  to g e th e r  with the LF tone w i l l  be zero a t  

d isplacements due to  the LF tone.where the slope of the 

sigmoid i s  zero.

In the experiments with CF tones  presen ted  toge the r  

with LF tones ( f ig u re s  3 .32 to  3 .43) the  LF tone was 

presen ted  t y p i c a l l y  a t  40 to  50 dB h igher  leve l  than the CF 

tone .  At : t h i s  leve l  d i f f e re n c e  between the CF and the LF

tones ,  the suppress ion  in the SV phase of BM displacement
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due to  the LF tone ,  i s  a l ready  apparent but does not 

suppress e n t i r e l y  the a c t i v i t y  due to  the  CF tone (see e .g .  

f ig u re  3.36 C). I t  i s  t h e re fo re  assumed th a t  the

displacement due to  the LF tone i s  la rg e r  than the

displacement due to  the CF to n e ,  a l though remembering th a t  

the BM i s  d isp lace d  more by a CF tone than by a LF tone at 

the CF lo c a t io n .

Assume th a t  the LF tone d isp la c e s  the BM to  such an 

ex ten t  th a t  the  OHCs follow a d e p o la r iz a t io n  path eau iva len t  

to  a displacement of I micrometer in f igu re  4 .7 .  The

approximate d e p o la r iz a t io n  of the OHC w i l l  then be as 

in d ic a ted  in f ig u re  4.8B. Figure 4.8C shows the 

d e p o la r iz a t io n  of  IHCs due to  an e l e c t r i c a l  i n t e r a c t i o n  with 

the OHCs, as desc r ibed  in sec t io n  4 .2 .  Figure 4.8D 

rep re sen ts  the IHC d e p o la r iz a t io n  due to  mechanical 

displacement of t h e i r  c i l i a ,  as  desc r ibed  in  se c t io n  4 .2 .  

The amplitude of CM produced by a CF tone p resen ted  with a 

LF tone w i l l  be determined by the d e r iv a t iv e  of the curve in 

f ig u re  4 .7 ,  as d iscussed  above. This i s  dep ic ted  in f igu re  

4.8E, for  th re e  d i f f e r e n t  l e v e l s  of the s inuso ida l  LF 

s t im u lus .

Observe the s i m i l a r i t y  between t h i s  curve and the shape 

of. h istograms fo r  s in g le  u n i t  a c t i v i t y  ( f ig u re s  3.32 to  

3 .43 ) .  For lower l e v e l s  of the LF ( f ig u re  4 .8 E I) the CM 

amplitude has one peak per cy c le ,  s ince  the LF tone does not 

d r ive  the  OHCs to  sa tu ra t io n *  For in termediary  le v e ls
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Figure  4 .7  Le.ft panel shows experimental  se tup  in  the 
b u l l f r o g  sa ccu iu s .  Upper r i g h t  p a n e l< reco rd  from 
e le c t ro d e  ME to  displacement of the c i l i a  by the 
m ic ro p ip e t te  SP. P o s i t iv e  displacement i s  towards the  
k inoc i l ium . From Hudspeth and Corey 1977. Lower 
r i g h t  pane l*D er iva t ive  of curve above. This 
d e r iv a t iv e  i s  the " a m p l i f i c a t io n "  of the  c e l l*  i . e .  
dV/dx, where V i s  the  amount of d e p o la r i z a t io n  and x 
i s  the  d isplacement of  the  c i l i a .  This curve i s  a l s o  
the  amount of d e p o l a r i z a t io n  produced by low i n t e n s i t y  
tones  when th e  c i l i a  a re  b iased  by a low frequency 
s t im u lus  o f  high i n t e n s i t y .
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Figure 4 .8  P oss ib le  mechanisms f o r  the  observed 
responses  of a u d i to ry  f i b e r s  to  CF tones  p rese n ted  
to g e th e r  with  LF tones .  A. BM movement due to  the  LF 
tone .  The CF tone i s  assumed to  d i s p l a c e  th e  BM a t  
l e a s t  an o rd e r  of magnitude l e s s  than  the  LF tone* 
because I t  i s  p resen ted  a t  a lower l e v e l .  B. OHC 
d e p o l a r i z a t i o n ,  leve l  such t h a t  s a t u r a t i o n  in  ST i s  
c l e a r l y  seen ,  s a t u r a t i o n  in  SV l e s s  c l e a r l y  seen .  C.
IHC d e p o l a r i z a t io n  due to  e l e c t r i c a l  i n t e r a c t i o n  with 
OHCs, as d isc u sse d  i n  s e c t io n  4 .2  (see f ig u re  4 . 5 ) .
D. IHC d e p o la r i z a t io n  due to  mechanical s t i m u la t io n .
E. Amplitude of CM by OHCs due to  the CF tone and 
presen ted  with the  LF tone? I, 2 and 3 fo r  
su c ce s s iv e ly  h igher  l e v e l s  of the  LF tone (J5, i and
2 micrometers d isp lacements  were used from f ig u re  4 . 7 ),
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( f ig u re  4.8E2),  the ST s a tu r a t io n  I s  reached, and fo r  high 

l e v e l s ,  both d e f l e c t io n s  produce s a t u r a t i o n .  The peaks of 

the curve in f ig u re  4.8E2 are not a t  the ze ro -c ross ings  of 

the BM movement, but a t  one to  two ms in to  the SV phase of 

the BM movement. This i s  perhaps the cause of the skewness 

seen in the  peaks of the histograms in f ig u re s  3.39 to  3.43; 

they occur s l i g h t l y  in to  the  SV displacement of the BM. The 

curve in f ig u re  4.7 seems th e re fo re  to  be able to  reproduce 

the main f e a tu r e s  observed in the histograms of f ig u re s  3.32 

to  3 .43.

f



4.4 Summary

The purpose, of t h i s  work was to  gain b e t to r  

undo.rotanding of the bas ic  r e l a t i o n  between b a s i l a r  membrane 

movement in the  cochlea and the aud i to ry  f i b e r  a c t i v i t y  in 

the o igh th  c r a n i a l  nerve..  This  was done by s t im u la t in g  the  

ear  with continuous tones or  tone b u r s t s ,  superimposed on 

low frequency s t im u l i  (LF). Sinusoids and Gaussian-shaped 

low frequency impulses were used as LF s t im u l i .

The LF s t im u l i  d isp laced  the BM in a q u a s i - s t a t i c  

fa sh ion ,  and ..the e f f e c t  of t h i s  b ia s in g  on the response to  

the continuous tones and tone b u r s t s  was. s tu d ie d .

The r e s u l t s  of these  experiments a re  in agreement with 

previous re search  by o th e r s ,  and with the recen t  r e s u l t s  of 

S e l l i c k  e t  a l .  (1981) and Sachs and Hubbard (1.981), t h a t  

wore published while t h i s  t h e s i s  was being w r i t t e n .

C h in ch i l la s  were used In  these  experiments .  The 

cochlear  microphonic a t  the round window was used to 

es t im ate  the BM movement in the  basal reg ion  of the  cochlea .  

Two measures* of the in f luence  of the LF s t im u l i  on the 

coch lear  responses were used, the  whole nerve ac t ion  

p o te n t i a l  (AP) and the s ing le  aud i to ry  nerve f i b e r  a c t i v i t y  

( sp ik e s ) .

The LF.stimulus alone e l i c i t e d  APs in each cycle  of a 

continuous s inuso ida l  ( f requencies  between 50 and 200 Hz 

were used).  In the case of Gaussian-shaped impulses,  each



d e f l e c t io n  of the CM ( r e f l e c t i n g  a d e f l e c t io n  of the BM) of 

s u f f i c i e n t  i n t e n s i t y  a l so  e l i c i t e d  an AP ( see f ig u re s  3 .3 ,  

3 .4 ,  3 .9  and 3 . J 0 ) .  The pha.se of the AP. was such th a t  the

spike a c t i v i t y  genera t ing  the AP was in f e r r e d  to  occur as 

the BM was d isp laced  by the  LF s t im ulus  toward sc a la  tympani 

(ST). The phase of maximum s in g le  u n i t  spike a c t i v i t y  due 

to  a 100 Hz continuous LF tone from 75 f i b e r s  was found to  

be l e s s  well def ined  than the  AP phase (see f igu re  3 .2 7 ) .  

F ibers  with c h a r a c t e r i s t i c  frequency (CF) lower than 2 kHz 

f i r e d  p r e f e r e n t i a l l y  in the SV to. ST (maximum v e lo c i ty )  

t r a n s i t i o n  of the BM. F ibe rs  with CF higher  than 8 kHz 

f i r e d  in the opposite,  v e lo c i ty  phase! f i b e r s  with CF between 

2 and 8 kHz f i r e d  in both th e se  phases and in the ST 

displacement of the  BM.

The r e s u l t s  of  these  experiments in d ic a te  thus th a t  

when a LF s t im ulus  i s  p resen ted  a lone ,  f i b e r  a c t i v i t y  does 

not occur as the  LF st imulus d i s p l a c e s  the BM towards SV.

The randomness of s in g le  u n i t  responses due to  LF tones 

has been re p o r te d  by o th e rs !  i t  i s  remembered t h a t  LF

s ig n a ls  are  not. idea l ,  s t im u l i  fo r  f i b e r s  of high CF ( e .g .

CF>2 kHz). The i n t e n s i t y  of  the  LF s ig n a ls  used had

th e re fo re  to  be high., in t roduc ing  the p o s s i b i l i t y  th a t  

d i s t o r t i o n  in  the  sound system caused the observed spread.  

We contend in s tead  t h a t  the spread i s  an i n d i r e c t  Ind ica t ion  

t h a t  inner  h a i r  c e l l s  (IHCs) do not have t h e i r  c i l i a

a t tached  to  the t e c t o r i a l  membrane* If  the c i l i a  were



a t t a c h e d ,  then one would expect a c t i v i t y  of s ing le  f i b e r s  to  

be r e s t r i c t e d  to  the SV displacement of the BM, because t h i s  

i s  the phase of d e p o la r iz a t io n  o f  the h a i r  c e l l s ,  as 

in f e r r e d  from the morphology of the  organ of Corti  and a l so  

seen in the phase of the CM.

Another in d ic a t io n  t h a t  the ins t rum enta t ion  and

assumptions made when f ind ing  the  phases above were proper 

i s  the outcome of experiments using tones p resen ted  toge ther  

with LF s t im u l i .  The phases of a c t i v i t y  proved t o  be

s t a b l e ,  well , def ined  and rep ea tab le  func t ions  of BM 

movement.

The APs due to  tone b u r s t s  were maskable by LF s t im u l i ,  

when the  b u r s t s  were presen ted  in  c e r t a in  phases of the  LF

stimulus ( f ig u re s  3.14 to  3 . IP) .  The most e f f e c t iv e  masking

was observed as  the  BM was in f e r r e d  to  be d isp laced  towards

ST. As the le v e l  of the LF s timulus was inc reased ,  another

phase of masking was ob ta ined ,  in the SV d e f l e c t io n  of the

BM by the  LF tone .  A s l i g h t  enhancement ( s e n s i t i z a t i o n ? )

was seen in the  t r a n s i t i o n  phase of the  BM movement, from SV 

to  ST ( f ig u re  3.17A).

At the s in g le  u n i t  l e v e l ,  the spike a c t i v i t y  due to  

continuous CF tones  was suppressed by LF s t im u l i  in the same 

phases as abovet ST d e f l e c t io n  of  the  BM by the  LF tone was 

the most e f f e c t iv e  suppress ing  phase,  and when the LF 

s t imulus leve l  was inc reased ,  another  phase of suppression 

was seen, in the  SV d e f l e c t i o n  of the  BM ( f ig u re s  3.32 to
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3 . 4 3 ) .

From the s i m i l a r i t y  in phase of these  experiments at 

the AP level  and a t  the s in g le  u n i t  l e v e l ,  we conclude th a t  

the masking o f  the AP i s  a r e s u l t  of suppress ion of f ib e r  

a c t i v i t y ,  and not a lack of sychrony or e x c i t a t i o n  of 

f i b e r s .  The l a t t e r  would be t ru e  i f  the maximum d e f le c t io n s  

of the  BM due to  the  LF tone gave increased  a c t i v i t y  due to 

the CF tone .

An at tempt to  expla in  these  f ind ings  follows*

The r e s u l t s  of experiments p resen t ing  LF s t im u l i  alone 

are in broad agreement with the cu r ren t  view of h a i r  c e l l  

func t ion .  The decreased .spike a c t i v i t y  in SY i s  explained 

r e c a l l i n g  t h a t  the EP i s  decreased in t h i s  phase, and the 

IHCs have thus l e s s  p o te n t i a l  to  depo la r ize  (see f igure  

4 .5 ) .  I t  i s  poin ted  out t h a t  th e re  i s  a I ms d iscrepancy 

between the phase of s i l e n c e  in the experimental r e s u l t  (see 

f ig u re  3 .2 7 ) ,  and the t h e o r e t i c a l  phase of no d e p o la r iz a t io n  

in f ig u re  4 .5 .

The APs, being genera ted in the  BM. d e f l e c t i o n  towards 

ST, are  explained by the same mechanism, namely t h a t  in t h i s  

d e f l e c t io n ,  the EP i s  more p o s i t i y e ,  inc reas ing  the 

d e p o la r iz a t io n  cu r ren t  through the IHCs ( f ig u re  4 .5 ) .

The two suppress ion  phases in the spike a c t i v i t y  per 

per iod  of LF tone (when the cochlea i s  s t im u la ted  with the 

LF tone and a CF tone) and the s im i la r  e f f e c t  in the AP
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s tudy can be expla ined  by Invoking a n o n l in e a r  mechanism 

t h a t  has been repor ted  to  e x i s t  in h a i r  c e l l s  of the 

b u l l f r o g  saccu lus  (see  f ig u re  4 . 7 ) .  Due to  a s a t u r a t i o n  of 

the output  of the OHCs caused by the LF s t im u lu s ,  the  CF 

tone cannot produce the . same amount of CM in the  maximum 

d e f l e c t io n  of the  BM. The s a tu r a t i o n  being g r e a t e r  in the 

ST than in the SV displacement o f  the  BM e x p la in s  the  more 

prominent suppress ion  and masking in  t h a t  d i r e c t i o n  of 

d e f l e c t i o n .  In such a scheme, the  am plitude of the  CM 

produced by the CF tone when p resen ted  with  a LF tone i s  

p i c tu re d  in f ig u re  4.8E. The s i m i l a r i t y  between the 

behavior of t h i s  func t ion  and the  his tograms of  s in g le  u n i t s  

( e .g .  f igu re  3.32 C, D, and E) i s  appa ren t .

I t  i s  not  p o s s ib le  to  exclude the  p o s s i b i l i t y  of

mechanical i n t e r a c t i o n  between, c e l l  p o p u la t io n s .  The

modulation of the  CM caused by a LF tone on th e  response, of

f i b e r s  t o  CF tones  i s  c l e a r l y  r e l a t e d  t o  th e  even ts  seen a t

the s in g l e  u n i t  l e v e l ,  but  a causal  . r e l a t i o n s h i p  i s  not

proven. I t  i s  not known whether the  sigmoid shape of the

curve seen in f ig u re  4.7 i s  due to  ion channel s a t u r a t i o n  or

simply due to  a s t i f f n e s s  in c re ase  towards th e  maximum

displacement of the c i l i a  from t h e i r  eq u i l ib r iu m  p o s i t i o n .

I f  the former, i s  t r u e ,  namely t h a t . t h e  sigmoid shape in

f ig u re  4.7 i s  due to  ion channel s a t u r a t i o n ,  then  the  theory

of e l e c t r i c a l  i n t e r a c t i o n  between h a i r  c e l l  pop u la t io n s  i s

favoredt  i f  the sigmoid shape i s  due to  mechanical

s t i f f n e s s ,  then the coupling between h a i r  c e l l  popu la t ions  
may have a mechanical component as w e l l .
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