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Abstract

In this thesis I advocate a probabilistic view of robust speech recognition. I discuss the

classification of distorted features using an optimal classifier, and I show how the gener-

ation of noisy speech can be represented as a generative graphical probability model. By

doing so, my aim is to build a conceptual framework that provides a unified understand-

ing of robust speech recognition, and to some extent bridges the gap between a purely

signal processing viewpoint and the pattern classification or decoding viewpoint.

The most tangible contribution of this thesis is the introduction of the Algonquin

method for robust speech recognition. It exemplifies the probabilistic method and en-

compasses a number of novel ideas. For example, it uses a probability distribution to

describe the relationship between clean speech, noise, channel and the resultant noisy

speech. It employs a variational approach to find an approximation to the joint posterior

distribution which can be used for the purpose of restoring the distorted observations. It

also allows us to estimate the parameters of the environment using a Generalized EM

method.

Another important contribution of this thesis is a new paradigm for robust speech

recognition, which we call uncertainty decoding. This new paradigm follows naturally

from the standard way of performing inference in the graphical probability model that

describes noisy speech generation.
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Chapter 1

Introduction and Overview

In recent years, automatic speech recognition has started to emerge as a practical and

useful technology. Applications range from large vocabulary medical dictation, and spo-

ken document retrieval to embedded applications such voice activated dialing or song

selection in a portable MP3 player.

In any speech based Human Computer Interaction (HCI) system, there will be a need

for verification that the system has understood the intensions of the speaker. This pro-

cess is called grounding[66]. People are very demanding on the overall naturalness and

effectiveness of this process. Most people will not use a dictation system if it misses

two words in a hundred. A user of a voice activated dialing service is likely to revert to

manual dialing if the system once calls a wrong number.

Speech recognition systems are very sensitive to a mismatch between the conditions

under which the system was trained and the deployment conditions[46]. Recognition

performance can degrade substantially, even for small differences. As a result, most

successful applications of speech recognition require the user to employ a close talking

microphone or a telephone handset, since they ensure relatively high signal quality. In

1
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some environments where speech based HCI would be convenient, it is not possible to

use close talking microphones. By increasing the immunity or robustness of the speech

recognition system to environmental interference, many new applications become viable.

Although there are many contributing factors to the usefulness of a speech based

HCI system, a crucial factor is the accuracy of the speech recognition component. In this

thesis I look at speech recognition component in isolation from other aspects of the HCI

system.

1.1 Thesis Overview

This thesis can be divided roughly into two parts. In the first part I present a general

probabilistic view of the problem of classification of corrupted observations, and then

formulate a graphical probabilistic model for of speech recognition in adverse environ-

ments. In the second part I present a new method for robust speech recognition called

Algonquin that takes advantage of the probabilistic viewpoint. This method is studied

extensively in the second part of the thesis. The subject of the individual chapters is as

follows:

Chapter 2 provides a brief review of the speech recognition and the problem of speech

recognition in a noisy environment. We introduce the environment model and discuss

how the environment effects and distorts the observations.

In Chapter 3 we look at the generic problem of pattern classification when observa-

tions have been distorted. We discuss some strategies for handling distorted observa-

tions, and relate them to each other. We also relate these strategies to speech recognition

of noisy speech, which is essentially a complicated version of the simple problem dis-

cussed in this chapter.
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In Chapter 4 we introduce the generative graphical model that describes an HMM

based speech recognizer, and expand this model to account for the generation of noisy

speech. We discuss inference in this generative model, and how traditional robustness

paradigms can be viewed as inference in the model. We also see that this view leads to a

new paradigm called uncertainty decoding.

In Chapter 5 we start filling in components of the generative model discussed in

Chapter 4. We discuss the Mel-Frequency Cepstrum Transform of the environment

model, and how it leads to the interaction likelihood that describes the relationship be-

tween clean speech, noise, channel and the observed noisy speech.

In Chapter 6 the remaining components of the noisy speech model are explained, and

we discuss how the interaction likelihood causes exact inference to be intractable.

In Chapter 7 we first discuss how recognition performance is assessed, and review

some prior methods for Robust speech recognition. In particular, we discuss the VTS

method.

In Chapter 8 we introduce a new method for robust speech recognition, called Algo-

nquin. This method solves the problem of the intractability of inference, by approximat-

ing the interaction likelihood with an approximate likelihood function that is computa-

tionally attractive. We look at various aspects of the Algonquin method and discuss its

advantages.

In Chapter 9 we continue to discuss the Algonquin method. In this chapter, we dis-

cuss the problem of estimating the environmental parameters, and they can be estimated

using a Generalized EM method.

In Chapter 10 we discuss a new decoding strategy for robust speech recognition called

uncertainty decoding or the soft information paradigm. This method is inspired by the

realization of how inference should be done properly which arose in the discussion of
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Chapters 3 and 4. We give results that show the promise of this new paradigm.

We conclude in Chapter 11 with a review and discussion of future directions.



Chapter 2

Speech Recognition in Adverse

Environments

This chapter introduces the basic workings of a speech recognition system. We also intro-

duce the standard environment model and discuss the effect noise and channel distortion

has on the speech signal and the related observation features.

2.1 Introduction to Automatic Speech Recognition

The purpose of a speech recognition system is to convert a sequence of real valued obser-

vations X = {x1, . . . ,xT} derived from the speech waveform, into a sequence of words

W [68]. Each word corresponds unambiguously to a sequence of discrete states s. We

can therefore work with states rather than words.

In order to describe the correspondence of states to observations, we use a probability

model P (X, s). Given a sequence of observations, this function is designed such that it

is maximized for the state sequence corresponding to the words uttered.

5
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Once the model P (X, s) has been constructed, the purpose of a speech recognizer is

to find the state sequence that maximizes the function

ŝ = argmax
s

P (X, s). (2.1)

There are in essence only two components of the correspondence model P (X, s);

the phone, word and language model gives transition probabilities p(si|si−1), that assign

values to the probability that one state follows another. The acoustic models p(x|s)

reflect the probability that the vector valued observation x resulted from the state s.

From these two components we can write the speech model P (X, s),

P (X, s) = p(s0)
T∏

i=1

p(xi|si)p(si|si−1), (2.2)

where i indexes the time frame of the observation and state[68].

We can also view a speech recognizer from a systems perspective. Figure 2.1 shows

a block diagram of a conventional speech recognition system.

Feature�
extraction� Decoder�

Word�
models�

Acoustic�
scores�

Language�
model�

Acoustic�
models�

Speech�
waveform�

Text�
transcription�

Figure 2.1: Block diagram of conventional speech recognition system.

The acoustic speech waveform is transformed into an analogue electronic signal by

a microphone which is then converted to digital form by an Analog-to-Digital Converter
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(ADC). Samples of the signal are taken at a fixed rate, commonly 8-16 thousand samples

per second.

In the Feature extraction stage (also called the Front end), the sampled waveform

is taken and converted into suitable features x. The most common features are Mel-

frequency Cepstrum Features. These will be discussed in detail in Chapter 5.

In the next block, labelled Acoustic scores the observed feature is compared to

finite number of speech sounds. The speech sounds are represented by acoustic models

p(x|s) where s designates the state and corresponds to a particular speech sound. There

are a few ways of modelling p(x|s), however, the most common and effective model is

the mixture of Gaussians model,

p(xi|s = k) =
∑

j

ρjN(xi; µj,k,Σj,k), (2.3)

where xi is an observation vector at time i, and sk designates a specific speech sound. In

this thesis we will only consider Gaussian Mixture acoustic models.

The decoder finds the most probable sequence of states “that generated” the observed

signal. It uses word and phone models as well as a language model that define allowable

word and phone sequences. The effect of using word and phone models is to reduce the

number of allowable state sequences that the recognizer has to search over.

2.2 Effects of the Environment

In this section we will introduce the effects of the environment. The traditional signal

processing environment model is shown in Figure 2.2 [1].

This model shows the speech signal being convolved with a linear channel, and noise

being added. The linear channel models the effect of the microphone and the room acous-
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+
Channel
Distortion

D is torted
signal

C lean
s ignal

Non-s tationary Nois e

Figure 2.2: A block diagram of the noise and channel.

tics. Ambient noise is modelled as an additive process. Examples of noise processes are

ventilation noise in an office, road noise in a car and the sound of a subway train.

In the time domain this can be written as[1]

y[m] =
K−1∑

k=0

x[m− k]h[k] + n[m], (2.4)

where x[m] is a sample of the clean speech signal, n[m] is a sample of the noise signal,

h[m] is the impulse response of the linear channel, y[m] is a sample of the noisy speech

signal.

A linear time invariant channel model is used to model the effects of room, the effects

of the microphone, and in the case of speech that is sent over a telecommunications

channel, the effects of the channel. Collectively, these are called the channel. In most

cases, physical characteristics of the channel vary slowly, and thus parameters of the

channel model vary slowly.

The observed signal goes through a sequence of operations in the Feature extraction

block, which will be discussed extensively in Chapter 5. In this block, short segments of

the time domain signal are processed to produce features. The result is a set of features

in the log-spectrum. In the log-spectrum domain, the relationship becomes

y = x + h + ln(1 + exp(n− x− h)) + e, (2.5)
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where e is an error term, and y is the log-spectrum representation of a portion of the time

domain signal y etc.

The channel and additive noise alter the log-spectrum coefficients in predictable

ways. In the log-spectrum domain, the effect of the channel is mostly linear, but the

effect of the noise is highly non-linear.

The effect of adding subway noise at 10dB below the signal level is shown figure

2.3(a). As can be seen, the lower components are intact while the higher components

have been masked by the noise. Figure 2.3(b) shows a noise free case where the signal

has been filtered to simulate the effect of a microphone with MIRS1 frequency charac-

teristics. Notice how the lower frequencies are attenuated, while higher frequencies are

amplified.

1MIRS is a transfer function characteristic for telecommunications terminals as defined in the Interna-

tional Telecommunications Union (ITU) technical specification GSM 03.50
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Figure 2.3: Plot of log-mel-spectra for a single frame. (a) Effect of noise. Dotted line

shows the noisy acoustic vector. Notice how the noise masks the signal for higher fre-

quencies. (b) Effect of using a different microphone. Dotted line shows the acoustic

vector of alternate microphone. Notice how the lower frequencies are attenuated, while

higher frequencies are amplified.



Chapter 3

Classifying Corrupted Observations

In this chapter we start by describing the effects of noise on a very simple pattern classi-

fier and discuss several measures that can be used to counter the effects of noise. These

include cleaning the signal by only taking bias into account, cleaning by also taking

a speech prior into account and changing the classifier to classify noisy observations.

We will then discuss the probability of error and find the relative effectiveness of these

measures.

The problem of noise robust speech recognition is a complicated version of the sim-

ple classifier discussed here and the discussion will therefore provide a framework that

various robustness methods can be related to.

3.1 Classification of Corrupted Observations

The simplest possible real value classifier takes one real valued observation and assigns

it to one of two classes. Figure 3.1(a) shows the Bayesian graph[44] for this classifier.

The model involves a discrete class variable s, and a continuous variable x. It is assumed

11
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that the variability in the observation is inherent in the process of generation, something

that cannot be helped. As an example, we assume the two classes are fricatives and

vowels s ∈ {f, v}, and that we have two corresponding continuous class conditional

distribution for the observation x, i.e. p(x|s = f) and p(x|s = v) which happen to

be Gaussian. This classifier will assign an observation x to the class of fricatives, if

p(x|s = f) · p(s = f) > p(x|s = v) · p(s = v) and vice versa[15].

s

x

(a)

s

x

y

(b)

Figure 3.1: (a) Classifier for clean observations: Graph shows real valued classifier with

one discrete variable s and one continuous observed variable x. (b) Classifier for cor-

rupted observations: Graph with one discrete variable s one continuous hidden variable

x and a continuous noisy observed variable y.

If the observation has been distorted in some way, we will not observe the clean

signal x, instead, we observe the noisy signal y. Figure 3.1(b) shows a Bayesian network

with an additional node for the noisy feature y. Notice that x is now a hidden variable,

and we assume that the distortion is independent of the class variable.
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3.2 Classifying Corrupted Observations

We will now discuss several measures we can take when we know that the clean obser-

vations have been corrupted.

3.2.1 Correcting for Bias.

In the spectrum domain, the effect of noise is to introduce both bias and uncertainty.

If the “noise” process introduces only bias (which is almost never the case), then we

can alter the decision boundaries of our classifier and the “noise” process will not effect

performance. This situation is shown in Figure 3.2. Here, the relationship between x and

y is y = x + 1. Notice that in Figure 3.2, the area of the shaded error region has not

increased from the top plot to the shifted bottom plot. Some robustness methods, such as

Spectral Subtraction only take the bias component into account.

The noise process also introduces uncertainty. In this thesis, uncertainty will be rep-

resented by the variance of the distributions we use. If for example the relationship

between x and y is y = x + e where e is a zero mean and normally distributed, then the

minimum classification error will necessarily increase, due to the increased overlap of

the class-conditional distributions. This is shown in the middle plot of Figure 3.3.

3.2.2 Maximum Likelihood Point Estimates: Using p(y|x)

As mentioned above, many robustness methods use point estimates of the random vari-

ables involved[33]. One very common method involves finding a point estimate of the

clean observation, based on the noisy observation. To do this, we can for example use
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Figure 3.2: Effect of bias: (Top) The class conditional distributions for clean observa-

tions. (Middle) Effect of bias (but no increase in uncertainty). Notice that the error

region has been enlarged. (Bottom) After the correcting for bias (e.g. using Maximum-

Likelihood parameter estimation).

the Minimum Mean Squared Error estimate[17]

x̂ =

∫
x · p(x|y)dx (3.1)

and then use the clean speech classifier.

Returning to our example of a normally distributed noise distribution with zero mean,

we see that y ∼ N(y; x,σ) . If we use the Maximum-Likelihood strategy for parameter

estimation, and assume a uniform distribution for p(x) we get

x̂ =

∫
x · p(y|x)p(x)

p(y)
dx =

∫
x · N(y; x,σ)dx = y. (3.2)

In this case we have used all the information about how the environment distorts clean

speech, but no prior information about clean speech x. As can be seen from Equation
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Figure 3.3: Effect of uncertainty: (Top) The class conditional distributions for clean ob-

servations. (Middle) Effect of increasing variance (but no bias). (Bottom) After finding

the optimum decision boundary (i.e. classification based on p(y|s)).

(3.2) x̂ = y, and hence, we will not move the decision boundary. Thus, if we use this

point estimate, we will introduce an additional error, as seen in the bottom plot of Figure

3.3. This is because the decision boundaries will shift, even thought the noise process

introduces no bias.
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3.2.3 Maximum A Posteriori Point Estimates: Using p(y|x) and p(x)

In Equation (3.2) we did not us prior information about x. If we use the prior model for

x we arrive at a different expression for x̂,

x̂ =

∫
xp(x|y)dx =

∫
x · p(y|x)p(x)

p(y)
dx (3.3)

=

∫
x

N(y; x,σy)
∑

s N(x; µs,σs)P (s)dx∑
s

∫
N(y; x,σy)N(x; µs,σs)P (s)dx

=
p(v)N(y, µv,σv + σy)

[
σvy+σyµv

σv+σy

]
+ p(f)N(y, µf ,σf + σy)

[
σf y+σyµf

σf+σy

]

p(v)N(y; µv,σv + σy) + p(f)N(y; µf ,σf + σy)
.

As we will see in the next section, using the prior model when producing a point estimate

of x, is better than assuming a uniform prior on x. MMSE-VTS and MMSE-Algonquin

make use of a speech model.

3.2.4 Classification Based on p(y|s)

Since the objective of the above methods is to restore the observations to their un-

corrupted state and return a point estimate, there is always the chance of error, and the

information about uncertainty is discarded. To take uncertainty into account, we should

base recognition on p(y|s),

p(y|s) =

∫
p(y|x, s)p(x|s)dx. (3.4)

This turns out to be the best we can do, i.e. to base our classification on p(y|s) instead

of p(x|s). Although this is the optimal classification strategy from the perspective of

recognition accuracy, it can be more computationally demanding.

By retraining, one can find the models p(y|s) and substitute them for p(x|s) into the

classifier in Figure 3.1(a). Model adaptation techniques approximate this procedure. In
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other words, for each s we first find an expression f(y) = p(y|s) as a function y and then

evaluate f(yobs).

In Chapter 10 we will introduce a new paradigm that we call the soft information or

uncertainty decoding paradigm. In this paradigm we calculate p(yobs|s) in a different

way. In essence, we first approximate p(yobs|x) for a particular observation yobs and then

evaluate the integral in Equation (3.4).

3.3 The Probability of Error

Robustness methods fall into two main categories, i.e. feature domain methods and

model domain methods [38]. Feature domain methods attempt to clean the signal and

produce a point estimate of the clean signal x̂ given the noisy observation y.

Recall the example of a vowel/fricative classifier. Now we wish to find the probability

of error of this classifier. First we look at the case where there is no distortion. The

probability of error E(px, x)[15] is the probability that we choose a vowel, when in fact

the observation was caused by a fricative, and vice versa

E(px, x) = p(v)

∫

x∈F

p(x|s = v)dx + p(f)

∫

x∈V

p(x|s = f)dx. (3.5)

where V is the set of x values where p(x|s = v) > p(x|s = f) and F is the set of x

values where p(x|s = f) < p(x|s = v). The argument px in E(px, x) represents the

decision boundaries with respect to px(x|s) and the argument x means that the input to

the classifier is the clean observation x.

The graph in Figure 3.1(b) shows how we update the model if we have a noisy ob-

servation y. In the previous section we described two methods for producing a point

estimate of clean speech x̂ and using that point estimate in the clean speech classifier. In
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this case the probability of error is

E(px, x̂) = p(v)

∫

y:x̂∈F

p(f(y)|s = v)dy + p(f)

∫

y:x̂∈V

p(f(y)|s = f)dy, (3.6)

where x̂ = f(y).

The last method we discussed involved basing the classification on p(y|s). Assuming

we know the exact form of p(y|x) the probability of error is now

E(py, y) = p(v)

∫

y∈F

p(y|s = v)dy + p(f)

∫

y∈V

p(y|s = f)dy (3.7)

= p(v)

∫

y∈F

∫

x

p(y|x)p(x|s = v)dxdy (3.8)

+ p(f)

∫

y∈V

∫

x

p(y|x)p(x|s = f)dxdy.

One may be led to think that is possible to do better by cleaning the observation and

passing the cleaned observation x̂ to the recognizer. If no additional information is used

in the cleaning process, then it follows from the data processing inequality [10] that it is

impossible to do better by processing the signal, e.g. by cleaning it. Thus we have

E(py, y) ≤ E(px, x̂). (3.9)

We also know that using clean speech will produce better results than either of the above

methods, thus

E(px, x) < E(py, y) ≤ E(px, x̂). (3.10)

3.3.1 A Numerical Example

To illustrate the relationship between these methods and their relative error rates, con-

sider the fricative/vowel classifier again. Assume that vowels and fricatives are equally

likely. Assume also that p(x|s = v) = N(x;−1, 0.1) i.e. normally distributed with mean
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Figure 3.4: (Top) The class conditional distributions for clean observations. (bottom)

Effect of bias and uncertainty p(y|x) = N(y; x + 1, 0.4).

−1 and variance 0.1, and similarly, p(x|s = f) = N(x; 1, 1). The probability of error

under these conditions is 0.0539 and the expected classification error is therefore 5.39%.

Now we corrupt the data using p(y|x) = N(y; x+1, 0.4), i.e. we shift the observation

by 1 and add a little Gaussian noise (see Figure 3.4). For such a simple model, it is

possible to evaluate the error integrals exactly. However, it is much simpler to use a

Monte-Carlo type method[65]. If we do this, we find that the probability of error when

using the noisy features without any processing is 59.1%.

If we ”clean” the observation using x̂ = y − 1 then the error is reduced to 27.4%. If

we use the complex expression for x̂ of Equation (3.3) that takes the prior information

about the speech models into account, the error is reduced to 24.2%. If we base the clas-

sification on p(y|s) the classification error is reduced to 20.9% which is the theoretically
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minimum classification error for this fictional vowel/fricative classifier.

3.4 Discussion

In this chapter we have introduced three strategies for dealing with noise in the simplest

of all real valued classifiers. The first is to do nothing. We looked at two possible ways to

produce a point estimate of clean speech x̂. The difference between these was the use of

a prior model for speech. The last strategy discussed was to use p(y|s) instead of p(x|s).

This turns out to be the best strategy.

Although this discussion is a simplification of the problem of noise robust speech

recognition, different Robust Automatic Speech Recognition (RASR) methods can be

classified based on which of these strategies they take. The problem of speech recog-

nition in noise is essentially a complicated version of the preceding discussion. The

complications arise from the non-linear way in which the environment effects the speech

features, due to the Mel-frequency Cepstrum (MFC) transform, and the more compli-

cated generative model required.

In this thesis, we will introduce new methods for robust speech recognition that allow

us to perform approximate inference despite the non-linearity of the MFC transform, and

explore the importance of taking uncertainty of various components of the model into

account. We will also explore the importance of using prior information of the speech

model.

In the discussion above, the way in which the environment effects the speech signal

was assumed to be known (i.e. the parameters of p(y|x)). This is not the case in real

world situations, and ways in which to estimate the environment model is another topic

of discussion in this thesis.



Chapter 4

Graphical Probability Models for

Robust ASR

In this chapter we discuss a graphical model representation of the corruption process.

We will introduce a generative model for noisy speech. We then discuss the different

paradigms for robust speech recognition from this perspective.

4.1 A Generative Graphical Model for Noisy Speech

Figure 4.1 shows a generative Bayes net[41, 54, 15] for the speech process. The graph

shows the state sequence of the speech process sx = sx
1 . . . sx

M and the class dependent

observation vectors X = x1 . . .xM . This graph is equivalent to the traditional Hidden

Markov Model with continuous observations[82].

To model the effects of environmental noise and channel distortion, we introduce two

new random variables, n and h. We will model these random variables by mixtures of

Gaussians (see Equation 2.3) similarly to speech. Hence, we use the variables sn
i and sh

i

21
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Figure 4.1: A Bayesian network of the speech generation process. The model is equiva-

lent to the traditional speech HMM with continuous observation densities.

to denote the class of n and h respectively, at time i. We also introduce a distribution

p(y|x,h,n) that describes how these random variables are combined to produce the

observed value y. At time step i, the combination of these three components is shown

by the graph in Figure 4.2(a). The relationship between y, x, h and n was introduced

in Equation (2.5). In Chapter 5, we will go into the details of the relationship and the

associated distribution, which we call the interaction distribution.

Cleaning methods can employ simplified versions of the true model. For example,

we can ignore the time dynamics of the speech and noise process, and a use smaller state

space for speech. This is shown in Figure 4.2(b). We will use cx to explicitly denote the

state space for cleaning model, and sx to designate the states of the true speech model.

Figure 4.3 shows a generative Bayes net for the speech process under noisy condi-

tions. The top part of the graph is the speech model, as before. The bottom part of the

graph models the noise process, where the state sequence sn = sn
1 . . . sn

M gives rise to

the noise observations N = n1 . . .nM . The speech and noise features are combined to

produce the noisy speech features Y = y1 . . .yM . The channel distortion is assumed to

be stationary throughout the utterance and we omit it from the graph in Figure 4.3. In

this graph, both the speech and noise are considered to be Markovian processes.

Given a sequence of clean speech observations X, the goal of the speech decoding
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Figure 4.2: (a) Two frames of the dynamic generative model. (b) The stationary model

for time frame i. This is graphical model for the joint distribution p(y,x,n,h, cx, cn, ch).

Cleaning algorithms often employ simplified probabilistic models.

process of a speech recognition system is to find the state sequence s with the highest

posterior probability p(s|X) among all possible state sequences[68]. The Viterbi algo-

rithm allows this to be done efficiently[11, 80]. Similarly, given a sequence of noisy

observations Y, the goal is to find the state sequence s with the highest posterior proba-

bility p(s|Y). In other words, we would like to perform inference in the graph of Figure

4.3.

Although there are loops in this network, they do not cause exact inference to become

intractable[50]. One can fold the network as is shown in Figure 4.4. In this network

we have combined the states sx and sn into a combined state variable s and similarly,

we have combined x and n into z. The number of states in s is the product of the

number of states sx and sn. For small noise state spaces, this is quite tractable. When

performing inference, we can either find a single best noise state sequence[78] or sum

over all noise paths, which is both theoretically more reasonable, and more amenable to
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Figure 4.3: A Bayesian network of the noisy speech generation process. The upper model

is equivalent to the traditional speech HMM with continuous observation densities. We

model the noise process in a similar way. The noise and speech vectors, ni and xi

combine to produce the observed noisy speech vectors yi.

implementation in a large vocabulary speech recognition system[50, 80].

Ideally, we would like to perform exact inference in this graph. However, exact

inference is intractable due to the non-linear mixing of the speech x, noise n and channel

h to produce the observed corrupted speech yobs. Is Chapter 6 we discuss the cause of

the intractability, and in Chapter 8, we introduce and analyze a method for approximate

inference in this network.
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Figure 4.4: Bayesian network for the noisy speech process. The noise HMM of Figure

4.3 has been combined with the speech HMM. The new state variable si is the concate-

nation of the state variable sx
i and sn

i and the variable z is the concatenation of x and

n.

4.2 Approaches to Noise Robust Speech Recognition

The two environmental robustness paradigms that we have discussed, i.e. feature clean-

ing and model adaptation, fit well into the probabilistic graphical model viewpoint. At

the end of this chapter we will also discuss the how the third paradigm i.e. uncertainty

decoding follows from our desire to do inference proper in the graph in Figure 4.3.

4.2.1 Feature Cleaning

In the feature cleaning method[33], the goal is to restore the noisy features, such that

they resemble clean features. We can use the joint conditional distribution p(x,n,h|yobs)

over clean speech x, noise n and channel h for this purpose. In this case, we can use the

Minimum Mean Squared Error (MMSE) criterion for estimating a point estimate x̂ for

the speech vector x,

x̂ =

∫
x · p(x|yobs)dx =

∫
x · p(x,n,h|yobs)dxdndh, (4.1)

where y is the noise speech vector. This is equivalent to clamping y to yobs and passing

messages to x in the graph of Figure 4.2(a) (i.e. marginalizing over x). This gives us
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p(x,yobs) from which we get p(x|yobs) and then take the MMSE estimate. Note that

when we take the MMSE estimate, we loose the information about uncertainty that is

encoded in the distribution p(x|yobs).

An advantage of this approach is that the complexity of the cleaning algorithm can

be low. For example, we can use the time invariant graph in Figure 4.2(a), instead of the

graph of the recognizer itself. Examples of methods that fit into this category are Spectral

Subtraction[7] and Codebook Dependent Cepstral Normalization (CDCN)[1], which we

will discuss in more detail in the Chapter 7.

4.2.2 Model Adaptation

It is known that if a speech recognizer is trained on noisy speech for a given noise type

(i.e. matched training), the recognition rate improves substantially. The goal of model

adaptation is to transform the acoustic models of the recognizer p(x|s) in such a way that

they approximate the noisy speech models p(y|s), i.e. the models that would be obtained

by training on speech in the current noise condition[26]. Hence the goal is to replace

these models with p(y|s). If we have the joint class conditional distributions, we can

accomplish this since

p̂(y|s) =

∫
p̂(x,n,h,y|s)dxdndh (4.2)

This is equivalent to clamping sx and marginalizing over y in the graph of Figure 4.3 for

each speech state sx, and replacing the acoustic distributions in the recognizer with the

resultant distributions p(y|sx). In this case, the decoding is based on the noisy speech

posterior p(s|Y).

Examples of methods that fall into this category include Parallel Model Combination

(PMC)[29] and the Model Domain Vector Taylor Series (MD-VTS) method[62].
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4.2.3 Uncertainty Decoding

Feature cleaning methods deliver a point estimate of the clean speech to the recognizer.

Information about the uncertainty of the observation is lost. It is intuitively appealing to

instead use a distribution that reflects the uncertainty of the cleaned observation x̂.

A third paradigm for robust speech recognition is to perform inference in the natural

way suggested by the graph of Figure 4.3. If we do this, the message passed up the

network from variable node x to variable node sx, would be f(x) = p(yobs|x) which

would be combined with p(x|sx) to produce p(yobs|sx), where

p(yobs|sx) ≈
∫

p(yobs|x)p(x|sx)dx. (4.3)

The end result is that the recognizer bases its classification on p(Y|s). If we could

perform exact inference, this would be equivalent to Model Adaptation.

However, the likelihood f(x) = p(yobs|x) has a very non-Gaussian form. Thus, we

introduce a new method that achieves the same goal, but allows us to work with functions

that are more accurately approximated by Gaussians.

In the uncertainty decoding paradigm, we approximate p(s|y)/p(s) as1

p(s|Y) ≈ p(s0)
∏

i

p(yi|si)

p(yi)
· p(si|si−1) = p(s0)

∏

i

p(si|yi)

p(si)
· p(si|si−1). (4.4)

The uncertainty decoding method retains the information about the uncertainty of

the observations, which feature cleaning discards due to the point estimate. We will

see that this method differs from model adaptation because we are not attempting to

produce a distribution over all y for a particular speech class. This allows us to tune the

approximation to a particular observed yobs.

1In a second manifestation of the soft information paradigm, we approximate p(x|yobs)/p(x).



Chapter 5

MFC Transform and the Interaction

Likelihood

In this chapter we first discuss the Mel-Frequency Cepstrum (MFC) transformation. We

then take the MFC transform of the environment equation, and discuss the how uncer-

tainty about the relationship of the environmental components is introduced in the pro-

cess of dimensionality reduction. This will lead to the definition of the interaction like-

lihood that describes how likely different combinations of x, n and h are once we have

observed a particular value for the noisy observation yobs.

5.1 The Mel Frequency Cepstrum Transform

Various acoustic features have been proposed in the literature [35]. Considerable work

has been dedicated to finding an effective low dimensional representation of the speech

signal. Some researchers have sought perceptually motivated features that mimic the

acoustic processing of the human auditory system, while others have had other goals

28
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such as computational efficiency.

Most commercial grade speech recognition systems use a form of Mel-Frequency

Cepstrum coefficients (MFCCs)[11, 38]. MFC features are both efficient to compute and

share characteristics with human auditory processing[68]. MFC features have proven to

perform well under noise free conditions (see Figure D.1 for a comparison of MFCC

features to Log-spectrum-features). As a result, a considerable proportion of noise adap-

tation research has focuses on the MFC features[33].

The Mel Frequency Cepstrum (MFC) transform is used to transform a segment of

the time signal into a set of features. There is a long history of using the MFC transform

for speech recognition. There are biological and technical justifications for the various

steps in the transform, but the most important reason for its use is its effectiveness in

producing high recognition rates.

Pre-�
emphasis� FFT� Magnitude�

Mel warping� log� DCT�

] [ m x ] [ k X 2 ] [ k X 

i X i x x 

Figure 5.1: Block diagram of the Mel-Frequency Cepstrum Transformation.

There are several steps in the MFC transform as shown in Figure 5.1 [68]. The steps

of the transform are:

1. Take a segment of the sampled signal. In the front end that we will use this is
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25ms, or 200 samples when the signal is sampled at 8kHz. Then these samples are

windowed with a Hamming window,

x[n] = w[n]x′[jS + n] for 0 < n < L (5.1)

where x′ is the sampled signal, S is the step size (e.g. 10ms or 80 samples at 8kHz)

and w[n] is the windowing function

w[n] = 0.54− 0.46 cos

(
2π(n− 1)

(L− 1)

)
, (5.2)

where L is the window length (commonly 25ms or 200 samples at 8kHz).

2. Take the Fast Fourier Transform (FFT). This results in the complex Discrete

Fourier transform features X[k] [11].

X[k] =
∑

n

x[n] exp

[
−j2πkn

K

]
, (5.3)

where K is the length of the FFT, (commonly 256 samples)

3. Take the magnitude squared of the FFT features. Phase information is discarded in

this step.

|X[k]|2 = X[k] · X∗[k]. (5.4)

4. Mel warping. This operation averages the results of the FFT. It reduces the fre-

quency resolution of the higher components. In the Aurora front end, this step

reduced dimensionality from 256 coefficients to 23.

Xi =
∑

k=0

fi[k]|X[k]|2 (5.5)

where fi is the i-th filterbank[72].

5. Take the logarithm:

xi = log(Xi). (5.6)
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6. Take the discrete cosine transform (DCT). After this step, the dimensionality is

further reduced by dropping dimensions 14 and higher, leaving a 13 dimensional

vector, for the original frame.

xc = Cx. (5.7)

Where the elements of the C matrix are defined as follows[72]:

ci,j =

√
2

N
cos

(
πi

N
(j − 0.5)

)
. (5.8)

7. Calculate time derivatives or delta and acceleration features. The delta coefficients

are also 13 dimensional as are the acceleration features. The results is a 39 dimen-

sional MFCC feature vector. The delta parameters are calculated from the base

features by

∆xt =

∑R
r=1 R · (xt+r − xt−r)

2
∑R

r=1 R2
, (5.9)

where R is a parameter (generally 2 or 3). The acceleration parameters are calcu-

lated similarly from the delta parameters[72].

In addition to good performance there are several theoretical motivations behind the

use of the MFC transform.

• The phase of the speech signal is discarded as it is not thought to contain much

information.

• The Mel frequency warping produces frequency resolution that resembles the fre-

quency resolution of the human ear[83].

• The log operation matches the amplitude sensitivity of the human ear[83].

• The FFT-log-DCT combination performs a blind de-convolution of the signal and

separates the features associated with the shape of the vocal tract and the features

that represent the voicing.
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Perhaps equally important is the effect of the transform on the probability distribu-

tions of the speech features [19]. It can be shown that if the signal is a white Gaussian

process in the time domain, the spectrum features will be Rayleigh distributed. The Mel-

warped power spectrum features are approximately Chi-squared distributed while the

log spectrum and cepstrum features are well modelled by mixtures of Gaussians. Thus,

from the perspective of using parametric pdf functions to approximate these distributions,

namely GMMs, the MFC transform also has advantageous effects since

• the distributions in the MFC domain are well modelled by mixtures of Gaussians,

• the gain of the signal is only reflected by the first coefficient c0. If this coefficient

is discarded, then the features are gain-invariant.

The MFC transform serves to reduce the dimensionality of the features. For example, in

the Aurora reference front-end the frame is of length 200 samples. After Mel-frequency

warping the dimensionality is reduced to 23. Higher quefrency components are discarded

after the DCT transformation leaving a 13 dimensional vector, which is then expanded

to 39 dimensions by appending time derivatives.

Dimensionality reduction is an important component of any pattern recognition sys-

tem. However, from a source separation viewpoint, it is important that the features of the

desired and interfering signals not overlap completely in feature space. Dimensionality

reduction is a many to one mapping which may cause signals that are separable in the

linear or spectrum domain to become inseparable in a cepstrum domain. In other words,

the optimal feature representation for robust speech recognition may not be the same as

the optimal feature representation for speech recognition in clean conditions. For exam-

ple, retaining the voicing information, which is lost in the Mel frequency transformation,

and the truncation of the DCT matrix, may be important to robust speech recognition.
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This is the motivation behind extended representations, such as using microphone

arrays, or multi-modal speech recognition (using speech and visual lip features). In this

thesis, however, we will try to do the best we can with the features we already have,

namely the MFC features.

5.2 The MFC Transform of the Interaction Equation

We will now derive the equations for the noisy signal y in terms of x,n and h at all stages

of the MFC transform. These results will be required in the discussion of the interaction

likelihood.

The standard environment model was introduced Chapter 2 (see Figure 2.2). In the

time domain the relationship is

y[m] =
K−1∑

k=0

x[m− k]h[k] + n[m], (5.10)

where x[m] is a sample of the clean speech signal, n[m] is a sample of the noise signal,

h[m] is the impulse response of the linear channel, y[m] are the samples of the noisy

speech signal.

The first step in the MFC transform is to take the Discrete Time Fourier transform of

the signal,

Y [k] = X[k]H[k] + N [k]. (5.11)

Next we take the magnitude square1,

|Y [k]|2 = |X[k]|2|H[k]|2 + |N [k]|2 + 2|X[k]||H[k]||N [k]|cosθk, (5.12)
1The Aurora reference front end uses the magnitude while the front end of the Microsoft Whisper

speech recognition system uses magnitude squared.
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where θk is the angle between X[k]H[k] and N [k]. The phase information is lost in this

operation.

We then do Mel-frequency binning, which reduces the resolution of higher frequency

components,

∑

k

wi
k|Y [k]|2 =

∑

k

wi
k|X[k]|2|H[k]|2 +

∑

k

wi
k|N [k]|2

+ 2
∑

k

wi
k|X[k]||H[k]||N [k]|cosθk, (5.13)

where wi
k are the weights of filter bank i and

∑
k wi

k = 1 for all i. The Mel-binning

operation can be seen as having the effect of weighting the lower components of the

DFT more heavily when calculating acoustic scores.

To simplify the notation we define:

Y 2
i =

∑

k

wi
k|Y [k]|2, X2

i =
∑

k

wi
k|X[k]|2,

N2
i =

∑

k

wi
k|N [k]|2, H2

i =
∑

k

wi
k|H[k]|2.

Also define:

X2
i H2

i =

(
∑

k

wi
k|X[k]|2

)(
∑

k

wi
k|H[k]|2

)
(5.14)

=
∑

k

wi
k|X[k]|2|H[k]|2 − ϵCTi. (5.15)

The error term ϵCTi is 0 only if H[k] is constant over the bins of each filterbank. If the

channel is not constant, then this assumption introduces error due to the cross terms.

We then define the pseudo-normalized phase related term:

αi =

∑
k wi

k|X[k]||H[k]||N [k]|cosθk√∑
k wi

k|X[k]|2
√∑

k wi
k|H[k]|2

√∑
k wi

k|N [k]|2
. (5.16)
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Substituting this into Equation (5.13) we get

Y 2
i = X2

i H2
i + N2

i + 2αi|Xi||Hi||Ni| + ϵCTi. (5.17)

The next step is to take the log. Taking the log of Equation (5.17) and using the notation

yi = ln Y 2
i , xi = ln X2

i , hi = ln H2
i , ni = ln N2

i , we arrive at

yi = xi + hi + ln

[
1 + exp(ni − xi − hi)

+ 2αi exp((ni − xi − hi)/2) + ϵCTi exp(−xi − hi)

]
(5.18)

or

yi = xi + hi + ln(1 + exp(ni − xi − hi))

+ ln

(
1 +

2αi exp ((ni − xi − hi)/2) + ϵCTi exp(−xi − hi)

1 + exp(ni − xi − hi)

)
. (5.19)

Since the dimensions are independent, we arrive at the interaction equation in the log

spectrum domain

y = x + h + ln(1 + exp(n− x− h)) + e, (5.20)

where x = [x1, . . . , xN ]T and e is the error term

e = ln

(
1 +

2α exp ((n− x− h)/2) + ϵCT exp(−x− h)

1 + exp(n− x− h)

)
. (5.21)

For notational convenience, we define:

g(z) = ln(1 + exp(z)) (5.22)

and write Equation (5.20) as

y = x + h + g(n− x− h) + e. (5.23)
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When modelling the relationship between y, x, h and n, most noise robustness tech-

niques overlook the error e in Equation (5.19) and assume the relationship is exact. Be-

low we will describe two ways in which the error term can be taken into account by using

a distribution over y given x, h and n.

Finally we take the DCT. Defining xC = Cx etc. we write

yC + xC + hC + Cg
(
C−1(nC − xC − hC)

)
+ Ce, (5.24)

where C is the truncated DCT matrix.

5.3 The Interaction Likelihood

Due to the error term, the relationship between y, x, n and h is not exact. We will take

this into account by using a probability distribution.

5.3.1 Fixed Variance Interaction Likelihood

A first approximation is to assume that the error term e is zero mean and Gaussian. This

leads to the distribution over y in the log-spectrum domain

p(y|x,h,n) = N(y;x + h + ln(1 + exp(n− x− h)),Ψ). (5.25)

In this case, the variance is fixed. We will call this the interaction distribution.

Since our observations are noisy speech features yobs, we are more interested in the

interaction likelihood

f(x,n,h) = p(y = yobs|x,h,n)

= N(y = yobs;x + h + ln(1 + exp(n− x− h)),Ψ). (5.26)
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Figure 5.2: Magnitude independent interaction likelihood f(x, n) = p(y = 8.51|x, n).

Figure 5.2 shows the a plot of 1 filter bank component of the interaction likelihood

for yobs = 8.51. This plot shows the combinations of noise and speech that are likely to

produce the observation. For example, if speech dominates noise, then we lie on vertical

part of the curve. If noise dominates speech, then we lie on the horizontal portion.

5.3.2 Interaction Likelihood with Magnitude Dependent Variance

The relative magnitude of x and n does have an effect on the size of the error in the

interaction equation.
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We can take this into account in the following way2. Recall the magnitude squared

relationship in Equation (5.12),

|Y [k]|2 = |X[k]|2|H[k]|2 + |N [k]|2 + 2|X[k]||H[k]||N [k]|cosθk. (5.27)

Even if we have knowledge of |X[k]|2, H[k]|2 and |N [k]|2, uncertainty about |Y [k]|2 is

due to the lack of knowledge about the phase θk. Since N [k] is independent of X[k] and

H[k], θk is uniform in (−π,π). Hence we introduce a random variable rk = cos(θk)

which has the distribution

p(r) =

⎧
⎪⎨

⎪⎩

1
π
√

1−r2 if |r| < 1

0 otherwise.
(5.28)

If X[k], H[k] and N [k] are constant within a filter bank i, the random variable αi is

αi =
∑

k

wi
krk. (5.29)

This random variable is zero mean and has probability 0 outside of (-1,1). The variance

tends to 0 as the number of bins in the filter tends to infinity. Although αi is dependent

on X[k], H[k] and N [k] we will assume it is zero mean with variance ψi.

Now we can write (omitting ϵCT )

y = x + h + ln(1 + e(n−x−h)) + ln

(
1 +

2αe((n−x−h)/2)

1 + e(n−x−h)

)
(5.30)

= x + h + ln(1 + e(n−x−h)) + ln

(
1 +

α

cosh(n− x− h)

)
. (5.31)

The last term in equation 5.30 using the first term in the Taylor series approximation for

ln(1 + x):

ln

[
1 +

α

cosh(n− x− h)

]
≈ α

cosh(n− x− h)
, (5.32)

2Derivation due to Alex Acero
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which is accurate for small values of α. We can therefore write

y ≈ x + h + ln(1 + e(n−x−h)) +
α

cosh(n− x− h)
. (5.33)
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f(x,n) = p(y=8.50|x,n) 

Figure 5.3: Magnitude dependent interaction likelihood f(x, n) = p(y = 8.5|x, n). In

contrast to the magnitude independent case (see Figure 5.2) the variance decreases as the

difference in magnitude of x and n increases.

Assuming α is zero mean with variance ψ we arrive at the interaction equation with

magnitude dependent variance:

p(y|x,h,n) = N

(
y;x + h + ln(1 + e(n−x−h)),

ψ

[cosh(n− x− h)]2

)
(5.34)
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From the expression of the variance, we see that if ni ≈ xi and hi is small, then the

denominator will be close to 1. Thus the variance is largest around the bend in Figure

5.3. If noise dominates speech or speech dominates noise, then the denominator will be

large, and the variance small.

5.3.3 Empirical plot of Interaction Likelihood

We would like to empirically assess the error in the interaction equation, for a particular

observed value yobs, since this would reveal the form of the interaction likelihood. To

do this, we could compute the log-spectrum features of a clean file, the log-spectrum

features of a noise file and the log-spectrum features of noisy speech file that results

from mixing the two. We could then plot all data pairs for x, n for a small range of y

values (assuming no channel distortion).

In the log-spectrum domain the sample set {{x1, n1, y1}, . . . , {xN , nN , yN}} (N is

the number of observations) can be viewed as a representation of the joint distribution

p(x, n, y). By noting that p(x, n, y) = p(x + ∆, n + ∆, y + ∆), we can produce a

plot that is proportional to p(x, n|yobs) = p(yobs|x, n)/(p(x) · p(n)). This gives us a

good appreciation for the true interaction likelihood p(yobs|x, n), assuming p(x) · p(n) is

relatively flat. The plot in Figure 5.4 was produced calculating the value ∆i = 8.5 − yi

and then plotting (xi −∆i, ni −∆i) for dimension 6 for data files at 20dB.

Notice how remarkably similar the magnitude dependent likelihood in Figure 5.3 is

to the scatter plot in Figure 5.4.
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Figure 5.4: Scatter plot of p(x, n|yobs) = p(yobs|x, n)/(p(x) · p(n)). This plot gives a

good idea of the form of the true interaction likelihood p(yobs|x, n). Notice how similar

this plot is to the magnitude dependent likelihood in Figure 5.3



Chapter 6

Inference in Non-Gaussian Networks

In this chapter we will discuss inference in the network of Figure 4.2(b). This is the

simplified “cleaning” network where the time dynamics of the speech and noise process

have been ignored. This model will be used in the MMSE-Algonquin algorithm that is

the subject of Chapter 8. We will start by discussing the speech, noise and channel com-

ponent models and then plot the posterior distribution over x and n for a given observed

yobs. This will demonstrate how the non-Gaussian interaction likelihood is the cause of

intractability of inference.

6.1 The Component Models

To perform inference in the graph of Figure 4.2(b) we need to specify the components of

the model. These are, the prior speech model p(x), the prior noise model p(n), the prior

channel model p(h) and the interaction likelihood p(y|x,n,h).

42
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6.1.1 The Speech Model

Many modern speech recognizers use Gaussian mixtures to model acoustic

observations[68]. We will also use a mixture of Gaussians to model speech. Thus

p(x) =
∑

sx

p(sx)p(x|sx) =
∑

sx

πsxN(x; µsx ,Σsx). (6.1)

The parameters of the speech model can found either from the parameters of the clean

speech models of the recognizer or found by training a mixture model directly on clean

speech features.

The soft information paradigm that we discuss in Chapter 10, requires the correspon-

dence of the states of the recognizer and the classes of the speech model. For large

vocabulary tasks, there can be tens of thousands of states.

The feature cleaning paradigm has the advantage that we can used a simplified speech

model that has far fewer mixtures than the model constructed from the acoustic models

of the recognizer.

6.1.2 The Noise Model

Similarly to the speech model, we used a mixture of Gaussians to model noise:

p(n) =
∑

sn

p(sn)p(n|sn) =
∑

sn

πsnN(n; µsn ,Σsn). (6.2)

It some cases, it suffices to use a single mixture for the noise model e.g., for low

intensity office noise. In other cases, significant gains in recognition accuracy can be

achieved by using multiple mixtures. If the noise process is non-Gaussian, e.g., if it is

non-stationary, then multiple noise mixtures provide a more accurate model[50].

Significant gains can be also achieved by adapting the parameters of the noise model

to the current noise conditions, e.g., by using a generalized EM approach.
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6.1.3 The Channel Model

The channel will be modelled in exactly the same way as the speech and noise models

p(h) =
∑

sh

p(sh)p(h|sh) =
∑

sh

πshN(h; µsh ,Σsh). (6.3)

The channel is often slowly varying or constant throughout an utterance. In many

cases, a point estimate is a sufficiently good model of the channel, which is a special

case of Equation (6.3) when we use a single component and the variance approaches

zero. For modelling consistency we use this expression. Another reason for using this

expression is that when learning the channel parameters from data, the convergence rate

is highly dependent on the variance.

For notational purposes, we will denote the combined column vector [x;n;h] as z.

We can then use the shorthand

p(z|s) = p(x|sx)p(n|sn)p(h|sh) =

N(z; µs,Σs) = N

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

x

n

h

⎤

⎥⎥⎥⎦
;

⎡

⎢⎢⎢⎣

µx
sx

µn
sn

µh
sh

⎤

⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎣

Σx
sx 0 0

0 Σn
sn 0

0 0 Σh
sh

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠
. (6.4)

The joint distribution over x,n,h and y and the class variables sx,sn,sh is thus

p(y,x,n,h, sx, snsh) = p(y|x,n,h)p(sx)p(x|sx)p(sn)p(n|sn)p(sh)p(h|sh), (6.5)

or

p(y, z, s) = p(y|z)p(s)p(z|s). (6.6)
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6.2 Inference

The last component we need in order to perform inference in the model of Figure 4.2(b)

is the interaction likelihood, which was discussed in Chapter 5.

We now have all the components of the network in Figure 4.2(b), i.e. the compo-

nents required to express the joint distribution p(y,x,n, sx, sn), omitting the channel for

clarity.

In the log-Mel-spectrum domain, the dimensions of x, n and y decouple. Each di-

mension corresponds to energy over a small frequency range. We can therefore plot a

single dimension or frequency bin.

In order to choose a representative speech model component, we use state 4 of the

speech model for the word ’three’. The observation vector is taken from the middle of

the word ’three’, from a file with noise at 15dB SNR. The single component noise model

p(n6|sn = 1) is estimated from the first 20 frames of the file.

The top left plot in Figure 6.1 shows dimension 6 of the speech model p(x6|sx = 4).

The top right plot shows dimension 6 of the noise model p(n6|sn = 1). The bottom

right plot shows the interaction likelihood f(x6, n6) = p(y6,obs|x6, n6) for a particular

observation y6 = 9.16.

The bottom right plot in Figure 6.1 shows the joint distribution over noisy speech,

clean speech and noise p(y6 = 9.16, x6, n6|sx = 4, sn = 1),

p(y6 = 9.16, x6, n6|sx = 4, sn = 1) =

p(y6 = 9.16|x6, n6)p(x6|sx = 4)p(n6|sn = 1) (6.7)

There are a few things to note about these plots. First is the relative variance of the

noise and speech components. A single component noise model tends to have much

greater variance than the components of the speech models.
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Secondly, and more importantly, the joint distribution curves as it approaches the

bend in of the interaction likelihood. This effect is the root of the intractability of exact

inference in the network, because we cannot easily integrate this function to find marginal

distributions.

It is known that the Gaussian form is very convenient from a computational perspec-

tive. In Chapter 8 we discuss how to perform exact inference in the network, by using an

approximations to the interaction likelihood. The method relies on using a linearization

of the interaction likelihood. The expansion point of the linearization is iteratively im-

proved to minimize the error in the approximation to the posterior (see Figure 8.2). The

result of using this approximations is that the posterior becomes Gaussian and inference

becomes tractable.
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(c) Non-linear interaction likelihood.
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(d) Non-linear joint distribution.

Figure 6.1: (a) The speech model p(x6|sx = 4). (b) The noise model p(n6|sn = 1).

(c) the interaction likelihood p(y6 = 9.16|x6, n6). (d) The joint distribution p(y6 =

9.16, x6, n6|sx = 4, sn = 1). Notice the non-Gaussian form of the joint distribution.



Chapter 7

Performance Evaluation and the Prior

Art

It is possible to calculate the probability of error of a speech recognizer in the same

way that was done for the simple vowel/fricative classifier in Chapter 3, i.e. by using

a Monte-Carlo method. Although this may be useful for gauging the relative error of

different robustness methods, or to assess the confusion probabilities of specific models

it is more common to evaluate the performance of a robustness method on real data[37].

A common way of reporting the performance of a Robustness Automatic Speech

Recognition (RASR) method, is to compare it to the performance of Spectral

Subtraction[7]. However, each research group has its own implementation of Spectral

Subtraction, which perform differently1.
1Table 7.2 shows the results of running a faithful implementation of Boll’s original Spectral subtraction

on Set A of the Aurora data set.

48
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7.1 Measuring Performance

In speech recognition, the most common figure of merit is based on word accuracy. It

is also possible to use other measures, such as sentence accuracy or even “meaning”

accuracy, when the recognizer has to recognize a smaller set of key words that relate to

the meaning of the sentence. In this thesis we will base the accuracy measures on words.

Percent Accuracy

Percent Accuracy is defined as[72]

Percent Accuracy =
N −D − S − I

N
× 100%, (7.1)

where I is the number of inserted words, S is the number of substituted words, D is the

number of deleted words and N is the total number of words in the transcription.

Word Error Rate

The Word Error Rate is defined as

WER =
I + S + D

N
× 100% = 100%− Percent Accuracy. (7.2)

Accuracy and WER will be the preferred way of reporting absolute performance.

Relative Reduction in WER

When assessing the relative merits of a particular method, a more informative measure

is the relative reduction in WER

Relative WER Reduction = 100%− WERMethod 2

WERMethod 1
× 100%. (7.3)



CHAPTER 7. PERFORMANCE EVALUATION AND THE PRIOR ART 50

7.1.1 The Aurora Evaluation Framework

Until recently there was no good method for different groups working on robust speech

recognition to compare the performance of their RASR methods. Different groups used

different data sets with different noise types, using different ways for calculating the

noise and signal levels when estimating SNR.

The Aurora 2 data set was produced by the European Telecommunications Standards

Institute (ETSI) STQ-AURORA DSR Working Group [37]. The data-set includes train-

ing data, test data, a standard front end and the HTK speech recognition system[72].

The motivation for the creation of the database was to evaluate different methods for dis-

tributed speech recognition, i.e. recognition of speech from mobile phones, kiosks etc.

Since the Aurora 2 is a complete recognizer with testing and training data, only the noise

robustness machinery changes from one group to the next.

The Aurora data set will serve as the major means of evaluating the different methods

discussed in this thesis. The database uses a subset of the TI digits database, which

contains spoken digits under clean conditions. Each noise condition consists of 1001

files containing 1 to 5 spoken digits each. Noise is added to these files at different Signal

to Noise Ratios (SNR). There are three test sets, A, B and C and two training sets, clean

and multicondition. Sets A and B have and the multicondition training set have additive

noise and are filtered to match a G.712 frequency response characteristic while set C has

additive noise and different channel distortion due to being filtered to match a the MIRS

frequency response characteristic.

Noise is added to the speech files at 6 different levels, (20dB, 15dB, 10dB, 5dB, 0dB

and -5dB). There are various ways of calculating the SNR depending on how the signal

and noise levels are computed. In Aurora, the signal level is computed from the speech

portions of the file only.
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Subway Car Babble Exhibit Average

Clean 98.96 99.06 99.02 99.17 99.05

20 dB 97.02 88.33 96.06 96.39 94.45

15 dB 93.25 70.98 85.09 90.77 85.02

10 dB 78.42 46.43 57.71 72.82 63.84

5 dB 50.32 25.09 27.56 40.05 35.75

0 dB 24.04 12.18 11.36 13.95 15.38

-5 dB 12.16 7.65 8.62 8.39 9.21

Average 68.61 48.60 55.56 62.80 58.89

Table 7.1: Accuracy for Set A of the Aurora 2 database for different noise types at

different SNRs. No processing has been performed on the noisy speech data.

In Set A the noises that are added to the clean speech file are:

• Subway: Sounds of a subway terminal and trains going by

• Car: Sound inside a driving car

• Babble: the sound of a room full of people talking simultaneously

• Exhibit: the sound of an art exhibit

These sounds are all non-stationary sounds where Car noise is the least varying, and

Subway is the most varying. Similarly, Set B contains Restaurant, Street, Airport and

Station. Set C contains two noise conditions, Subway M and Street M noise which have

been filtered with the MIRS filter. Baseline results, i.e. results when the noisy files are

fed directly to the recognizer, are give in Table 7.1.

Set A and B are similar in the respect that there is no mismatch between the channel

in the training and testing sets. A robustness method does not need to correct for any
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channel mismatch. The difference between sets A and B, besides the different noises,

is that for set A, it is allowable to incorporate global knowledge of the noise into a ro-

bustness method. Some robustness methods build a mapping from noisy speech to clean

speech. These methods are called “stereo” based methods, in the sense that they are

constructed using clean speech and the same speech after it has been distorted (i.e. not

binaural). They are non-parametric and therefore do not adapt well to new noise environ-

ments. This is the reason for sets A and B, since is allowable to construct such a mapping

from set A, but not for set B. SDCN[1] and SPLICE[12] are examples of “stereo” based

methods. However, in this thesis we look only at parametric methods that incorporate an

environment model, and use only the current file to estimate the parameters of the noise

mode. Sets A and B are therefore equivalent for our purposes. The purpose of set C is to

asses the effectiveness of a robustness method at handling channel distortion.

7.1.2 The Aurora-HTK Recognizer

The Aurora 2 database also describes the word models and the training procedures for the

CUED-HTK2 speech recognition system[72]. There are 11 word models (one, two, three,

four, five, six, seven, eight, nine, zero, oh), each of which is a 16 state forward HMM. In

addition there are two silence models; a 3 state model, and a single state model.

7.2 The Prior Art

In this section, the most relevant feature domain and model domain methods will be

discussed, and recognition results on the Aurora 2 database will be given for some of

them.
2Cambridge University, Engineering Department Hidden Markov Model Tool Kit



CHAPTER 7. PERFORMANCE EVALUATION AND THE PRIOR ART 53

7.2.1 Feature Cleaning

These methods alter the noisy features y such that they resemble the clean features x.

Referring back to the block diagram of a speech recognition system in Figure 2.1, these

change the features before they enter the Acoustic scores block. They can work in the

time domain, i.e. before the Feature extraction block. They can work in the MFCC do-

main, i.e. they alter the features between the Feature extraction block and the Acoustic

scores block or they replace part of this block. Methods that fall into this category

include Spectral Subtraction (SS)[7], Cepstrum Mean Normalization (CMN)[25], the

RelAtive SpecTrAl method (RASTA)[36], Codebook Dependent Cepstral Normalization

(CDCN)[1] and SPLICE[12].

A characteristic of these methods is that they produce a point estimate of the clean

features. Hence, they discard what is known about the uncertainty of the features.

Spectral Subtraction

It is informative to look at Spectral Subtraction, since it is the most straightforward

and perhaps most widely used feature domain technique[7]. Various extensions to this

method have been proposed[46]. Spectral Subtraction does not use a prior model for

speech.

In its original form SS is a time domain method and is intended for removing the

effects of additive noise n[m] only, hence the interaction equation is y[m] = x[m]+n[m]

or using the power spectrum: |Y (f)|2 = |X(f)|2+|N(f)|2. Boll assumed that the effects

of the noise can be modelled as a bias in the spectrum domain, i.e. the noise is assumed

to be steady state noise with zero variance. The bias is estimated from a section of the
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signal that contains only noise (this necessitates a good speech/non-speech detector),

̂|N(f)|2 =
1

M

M−1∑

i=0

|Yi(f)|2. (7.4)

The noise bias is then subtracted from the short time spectrum values. The estimate of

|X(f)|2 is
̂|X(f)|2 = |Y (f)|2 − ̂|N(f)|2. (7.5)

Due to the point estimate of the noise, this method suffers from the fact that the ̂|X(f)|2

can become negative. This is in fact only one of 5 steps in the original spectral subtraction

algorithm.

Spectral subtraction is often used as the baseline method that other methods are com-

pared to. Results for a faithful implementation of SS are shown in Table 7.2. Notice

that the performance of high SNR deteriorates compared to not processing the features

(see Figure 7.1). Due to the rectification of Equation (7.5) and noise/speech classifica-

tion, distortion is actually introduced into the signal at higher SNRs causing recognition

performance to degrade. For lower SNR the performance is better than if nothing is done.

MMSE Vector Taylor Series

The Vector Taylor Series (VTS) method[62, 63] is related to the Algonquin method in

that both use the Vector Taylor series to linearize the relationship between y, x, n and

h. The VTS method is in essence a model adaptation method but can be used to clean

features as well as to update acoustic models. We will first discuss the method for the

purpose of cleaning features.

The VTS method uses a point estimate of the noise process3 as SS does, but it also
3The 0-th order version uses a point estimate for the noise, but the 1-st order version takes the variance

of the noise process into account
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Subway Car Babble Exhib. Ave.

Clean 97.14 96.70 97.58 97.38 97.20

20 dB 91.65 82.65 94.30 87.04 88.91

15 dB 82.84 71.67 88.99 77.51 80.25

10 dB 68.19 56.23 79.39 61.74 66.39

5 dB 46.58 38.75 63.47 41.01 47.45

0 dB 23.79 18.95 35.82 21.69 25.06

-5 dB 11.18 9.55 13.93 10.89 11.39

Average 62.61 53.65 72.39 57.80 61.61

Table 7.2: Accuracy for Set A. Results for Spectral Subtraction. Noise level estimated

from the first 20 frames.

uses a prior model for speech. Another difference is that we work in the log-spectrum

domain.

The equation to find a point estimate for clean speech is

x̂ = y −
M−1∑

s=0

P (s|y)f(µx,s, µn, µh), (7.6)

where

f(x, n, h) = h + log(1 + exp(n− x− h)). (7.7)

and P (s|y) is the posterior probability of each component of the speech model. In the

VTS method, the relationship between x, n, h and n is assumed to be an exact i.e.

y = x + h + log(1− exp(n− x− h)). We will explain how P (s|y) is found in the next

section.

Intuitively, this equation is similar to the cleaning equation of spectral subtraction i.e.

Equation (7.5), but instead of subtracting a fixed noise vector, this method subtracts the
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“best” correction vector from the current observation. The correction vector is a weighted

sum of component correction vectors f(µx,k, µn, µh), each of which corresponds to a

speech center µx,k of the prior speech model. If the combination of a particular speech

center µx,k, noise µn and channel µh is a good explanation for the observed value y, then

the score P (s|y) will have a relatively high score (close to 1) and the resulting estimate

x̂ will be close to µx,k.

Moreno evaluated MMSE VTS and found it to outperform CDCN[62] which in turn

produces better results than SS[1]. Table 7.3 shows results for MMSE-VTS of order 0

and Table 7.4 shows results MMSE-VTS of order 1.

Subway Car Babble Exhibit Average

Clean 98.99 99.12 99.05 99.26 99.11

20 dB 96.56 97.85 97.46 96.45 97.08

15 dB 92.08 95.47 94.04 91.70 93.32

10 dB 80.66 87.76 80.11 80.10 82.16

5 dB 58.00 65.15 51.54 54.83 57.38

0 dB 30.80 31.32 24.19 24.99 27.82

-5 dB 15.29 11.94 13.96 11.14 13.08

Average 71.62 75.51 69.47 69.61 71.55

Table 7.3: Accuracy for Set A. Results for 0th order VTS. A 256 mixture speech model

was used. Noise level estimated from the first 20 frames.

7.2.2 Model Adaptation

Model domain methods alter the acoustic models of the recognizer, based on a model of

the noise process. Methods that fall into this category include Parallel Model Combina-
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Subway Car Babble Exhibit Average

Clean 98.99 99.12 99.05 99.26 99.11

20 dB 97.27 97.61 98.18 97.38 97.61

15 dB 95.33 93.53 95.97 94.57 94.85

10 dB 87.75 79.23 85.77 86.36 84.78

5 dB 68.04 49.64 53.65 61.77 58.28

0 dB 37.61 20.41 22.79 26.32 26.78

-5 dB 15.93 5.35 10.20 10.43 10.48

Average 77.20 68.08 71.27 73.28 72.46

Table 7.4: Accuracy for Set A. Results for 1st order VTS. A 256 mixture speech model

was used. Noise level estimated from the first 20 frames.

tion (PMC)[26] and the Vector Taylor Series (VTS) method[62, 3, 50]. Referring back

to the block diagram of a speech recognition system in Figure 2.1, these methods swap

in a different set of acoustic models.

Model Domain VTS

As noted above, the VTS method alters the models p(x|s) so that they approximate

p(y|s). If we start with the model in Figure 4.2(b), we can write

p(y|s) =

∫

x,n,h

p(y|x, n, h)p(x|s)p(n)p(h). (7.8)

The VTS method approximates p(y|s) with a Gaussian distribution. As mentioned

before, the relationship between x, n, h and n is assumed to be an exact i.e. y =

x + h + log(1− exp(n− x− h)) or

p(y|x, n, h) = δ(y − (x + f(x, n, h))), (7.9)
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where f(x, n, h) = h + log(1 − exp(n − x − h)). The noise and channel models p(n)

and p(h) are also replaced by delta functions p(n) = δ(n − n0) and p(h) = δ(h − h0),

thus

p(y|s) =

∫
δ(y − (x + f(x, n0, h0)))px(x|s)dx. (7.10)

It is still not possible to perform the integral in Equation (7.10), due to the non-linear

function f(x, n0, h0). The approach taken in the VTS method (and Algonquin) is to

linearize the f at x0,n0 and h0 using the Vector Taylor Series

fl(x, n, h) = f(x0, n0, h0) +
d

dx
f(x0, n0, h0)(x− x0) (7.11)

+
d

dn
f(x0, n0, h0)(n− n0) +

d

dh
f(x0, n0, h0)(h− h0). (7.12)

Once this has been done, the integral can be taken without any difficulty.

Recall that p(y|s) is approximated by a Gaussian. Hence, we instead find the mean

and variance of p(y|s) is

µy,s = E(y) =

∫
y

∫
δ(y − (x + fl(x, n0, h0)))p(x|s)dxdy, (7.13)

and

Σy,s = E(y2)− µ2
y,s. (7.14)

If we use only the first term in the Taylor series, then the parameters of p(y|s) are

µy,k = µx + f(µx,k, µn, µh), (7.15)

and

Σy = Σx. (7.16)

The updated acoustic models p(y|s) are used instead of the original acoustic models

p(x|s). The acoustic models can contain multiple mixtures. In this case, the transforma-

tion is repeated for each mixture, independently of other mixtures.
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The first order vector Taylor series can also be used, which results in slightly more

complicated update equations for Σy
4

Σy = (1 + Fx)Σx(1 + Fx)
T , (7.17)

while µy remains the same. In Equation (7.17) Fx = d
dxf(x0, n0, h0) is the matrix deriva-

tive of f evaluated at x0, n0, h0.

The VTS method requires an expansion point x0, n0, h0. This expansion point is

chosen to be the mode of the speech distribution µx, the mode of the noise distribution

µn and the mode of the channel distribution µh.

For the MMSE version of VTS, we require p(s|y), i.e. the weights used in Equation

(7.6). These are found by

P (s|y) =
p(y|s)P (s)

p(y)
, (7.18)

the mode of the channel model µh.

Acero et al.[3] compared the accuracy of VTS and PMC and found that VTS more

accurately updated the model parameters of p(y|s).

Since the MFC acoustic models are used and not log-spectrum models, the equations

become slightly more complicated, and one has to transform the delta and acceleration

models as well. This is form of the equations is reported in [3].

7.3 Discussion

Figure 7.1 shows the average results for the methods discussed in this chapter. The red

line (circles) shows the results of running the recognizer directly on the noisy speech
4If n and h are not assumed to be point estimates, the update equation is Σy = (1+Fx)Σx(1+Fx)T +

FxΣnFT
x + (1 + Fx)Σh(1 + Fx)T as reported in [63]
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files. The green (boxes) line shows the results for Spectral Subtraction, and the blue line

(triangles) shows results for the Vector Taylor Series Method.

The first order VTS method performs considerably better than the Spectral Subtrac-

tion method. There are a number of differences between these two method, but an im-

portant difference is that the VTS cleaning algorithm uses a speech model, whereas SS

does not. This result was predicted by the results in Chapter 3, where we saw that incor-

porating a speech model into the cleaning paradigm produced better results.
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Figure 7.1: The plot shows results for the various cleaning methods discussed in this

chapter. The red line (circles) shows the results of running the recognizer directly on the

noisy speech files. The green (boxes) line shows the results for Spectral Subtraction, and

the blue line (triangles) shows results for the Vector Taylor Series Method.



Chapter 8

The Algonquin Framework

In Chapter 4 we stated that from the probabilistic viewpoint, we wish to perform infer-

ence in the graph of Figure 4.3. In Chapter 5 we saw that the MFC transform involves

taking the Log of the Mel-spectrum features before performing the DCT. The Log is a

highly non-linear operation, and is the root of the computational hurdles, that need to be

addressed in order to perform inference efficiently in this graphical model.

The Algonquin algorithm [23] produces a Gaussian approximation to the joint con-

ditional distribution p(x,n,h|yobs) (see Figure 8.1). As we saw in Chapter 6, this distri-

bution is a mixture of components that cannot easily be used, e.g. when we wish to find

a point estimate, due to the difficulty of integration. The Algonquin method allows us to

work with a Gaussian approximation to the joint conditional distribution which in turn

allows us to find point estimates of x, n and h or approximate p(s|yobs).

The Algonquin method uses a linear approximation to the interaction equation. The

leads to a Gaussian form for the Interaction likelihood which makes inference tractable.

In this chapter we introduce the Algonquin method and discuss its performance.
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(a) Non-linear joint distribution
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Figure 8.1: (a) Non-linear joint distribution for observed yobs = 9.37. (b) Linear approx-

imation to joint distribution found using the Algonquin algorithm.

8.1 The Algonquin Framework

In the following sections we first discuss the linearization of the interaction equation

and then go on to discuss the Algonquin framework and how it allows us to iteratively

improve the linearization.

8.1.1 Linearization of the Interaction Likelihood

The Algonquin method uses a Taylor series linearization of the interaction equation. The

non-linear interaction likelihood is shown in Figure 8.2(a) while the approximation to

the non-linear likelihood is shown in Figure 8.2(b).
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Figure 8.2: (a) Non-linear interaction likelihood. (b) Linear approximation to interaction

likelihood.

Recall that the interaction equation in the log spectrum domain is

y ≈ g
(

⎡

⎢⎢⎣

x

n

h

⎤

⎥⎥⎦
)

= x + h + ln(1 + exp(n− x− h)). (8.1)

Define zT = [xTnThT ]. In order to linearize this equation using the first order Taylor

series, we require the function evaluated at an expansion point g(z0), and it’s derivative

G(z0) at the same point

gl(z) = g(z0) + G(z0)(z− z0). (8.2)

Taking the derivative of the i−th component of the vector g with respect to the j−th

component of xj we find

dg(xi, ni, hi)

dxj
=

1

1 + exp(ni − xi − hi)
(8.3)
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if i = j and 0 otherwise. Similarly, the derivative with respect to nj is

dg(xi, ni, hi)

dnj
=

exp(ni − xi − hi)

1 + exp(ni − xi − hi)
. (8.4)

The derivative with respect to hi is equal to the derivative with respect to xi.

We define the d× d matrices, where d is the dimension of x:

Gx(x,n,h) =
dg(x,n,h)

dx
= diag

[
dg(x1, n1, h1)

dx1
. . .

dg(xd, nd, hd)

dxd

]
, (8.5)

and similarly for Gn and Gh. diag[x] means that the elements of the vector x populate

the diagonal of a diagonal matrix. For notational purposes we define the 3d× d matrix:

G(z) =
dg(z)

dz
=
[
Gx(x,n,h); Gn(x,n,h); Gh(x,n,h)

]
(8.6)

Now we can finally write the linearized joint distribution, using the subscript l to

differentiate it from the non-Gaussian joint distribution:

pl(y, z, s) = N(y;g(z0) + G(z0)(z− z0),Ψ)πsN(z; µs, Σs). (8.7)

Note that the linearized joint distribution is a function of the linearization point z0.

8.1.2 The Posterior qyobs(z)

The distribution of Equation (8.7) is Gaussian and we can potentially marginalize over

any of its random variables. There are two problems with using pl directly:

• The form of Equation (8.7) does not allows us to directly read off the mode of the

distribution and the marginal p(yobs|s).

• pl requires a linearization point z0, and using a poor choice for z0 can have a very

negative effect on the results.
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To solve the first problem we will rewrite pl as q using an alternate parameterization. To

address the second problem, we will iteratively update the Taylor series expansion point,

which allows us to align the mode of the approximate posterior q to the true posterior p.

Our ultimate goal is to perform inference for a particular observation yobs. Let us

therefore discuss the form of the function q(z|yobs), i.e. the re-parameterized version

of the linearized joint posterior function pl(z|yobs). The posterior is represented by a

Gaussian mixture model

pl(x,n,h|yobs) = q(x,n,h|yobs) =
∑

sx,sn,sh

q(sx, sn, sh|yobs)q(x,n,h|sx, sn, sh,yobs),

(8.8)

or using shorthand notation

qyobs
(z) =

∑

s

ρsqyobs
(z|s), (8.9)

where the subscript yobs indicates dependence on the observations. The posterior mixing

weights for classes sx, sn and sh are qyobs
(sx, sn, sh) ≈ p(sx, sn, sh|yobs). We use the

shorthand ρsxsn,sh or ρs for qyobs
(sx, sn, sh).

The form of each mixture is

qyobs
(x,n,h|sx, sn, sh) = N

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

x

n

h

⎤

⎥⎥⎥⎦
;

⎡

⎢⎢⎢⎣

ηx
sxsnsh

ηn
sxsnsh

ηh
sxsnsh

⎤

⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎣

Φxx
sxsnsh Φxn

sxsnsh Φxh
sxsnsh

Φxn
sxsnsh Φnn

sxsnsh Φnh
sxsnsh

Φxh
sxsnsh Φnh

sxsnsh Φhh
sxsnsh

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠
,

(8.10)

or using shorthand notation

qyobs
(z|s) = N(z; ηs,Φs). (8.11)
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This form assumes that x, n and h are jointly Gaussian. Compare the form of Equation

(8.10) to the joint distribution in Equation (6.6) that we repeat here:

p(y, z|s) = p(y|x,n,h)p(x|sx)p(n|sn)p(h|sh) =

= p(y|x,n,h) · N

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

x

n

h

⎤

⎥⎥⎥⎦
;

⎡

⎢⎢⎢⎣

µx
sxsnsh

µn
sxsnsh

µh
sxsnsh

⎤

⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎣

Σx
sxsnsh 0 0

0 Σn
sxsnsh 0

0 0 Σh
sxsnsh

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠
. (8.12)

Note that the covariance matrix Φs is now tri-diagonal (each component matrix Φxx
sxsnsh

etc. is diagonal1). This reflects the fact that when y is observed, x, n and h are no longer

independent.

We now have three expressions for the posterior: the non-linear posterior

p(x,n,h|yobs), the linearized posterior pl(x,n,h|yobs), and the re-parameterized and

(possibly factorized) posterior qyobs
(x,n,h).

The linearized conditional joint distribution pl(x,n,h|yobs) and the un-factorized dis-

tribution qyobs
(x,n,h) of Equation (8.8) are both Gaussian and can model the exact same

distribution. However, the parameters of the two distributions are different. The mode

of the posterior pl(x,n,h|yobs) is not coincident with the modes of the priors or the

interaction likelihood. The parameters of qyobs
(x,n,h) are coincident with the modes

of pl(x,n,h|yobs). Recall that we linearized the interaction function “arbitrarily” at the

modes of the noise and speech priors. Having found the mode of the posterior, we can

use this mode as the new expansion point, as we will see in Section 8.1.4.
1In the log-spectrum domain, we can re-arrange the elements of vector z to be

[x1, n1, h1, x2, n2, h2, . . . , xd, nd, hd]. The resultant Φ matrix is then block diagonal, where each

block is 3× 3. This shows that finding its inverse of Φ requires finding the inverse of d 3× 3 matrices.
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8.1.3 The Parameters of qyobs(z)

We have now specified the form of a linearized version of the joint distribution

pl(yobs,x,y,h) and an alternate parameterization qyobs
(x,y,h) for the linearized pos-

terior. However, we have not yet described how the parameters of qyobs
are to be found.

Define G = G(z0) and g = g(z0). We can directly write each component of

pl(x,n,h,yobs) by invoking matrix identity (A-10).

pl(yobs,x,n,h|sx, sn, sh) = pl(yobs|x,n,h)p(x|sx)p(n|sn)p(h|sh)

= N(yobs;g −Gz0 + Gz, Ψ)N(z; µs,Σs) (8.13)

can be written as

q(yobs|s)q(z|yobs, s) = γsN(z; ηs,Φs), (8.14)

where the mixture mode is

ηs = Φs

[
Σs

−1µs + GTΨ−1(yobs − g + Gz0)
]
, (8.15)

and the covariance matrix is

Φs = (Σs
−1 + GTΨ−1G)−1, (8.16)

and

γs = (2π)
dz−dy

2 |Σs|−1/2|Ψ|−1/2|Φs|1/2

exp
[
−1

2

(
µT

s Σs
−1µs + (yobs − g + Gz0)

TΨ−1(yobs − g + Gz0)

− ηT
s Φs

−1ηs)
)]

. (8.17)

Note that γs = pl(yobs|s). In order to find the weights of the components of the posterior

qyobs
we multiply by the priors and normalize

ρs = pl(s|yobs) =
pl(yobs|s)p(s)∑
i pl(yobs|i)p(i)

=
γsπs∑
i γiπi

. (8.18)
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To summarize,

pl(x,n,h|yobs) = qyobs
(z) =

∑

s

ρsN(z; ηs,Φs), (8.19)

where ρs, ηs and Φs are defined above.

8.1.4 Updating the Linearization Point

As was noted previously, the Taylor series is expanded at z0. This point needs to be deter-

mined somehow. If we use the previously calculated ηs as an expansion point and iterate

the above equations, then the ηs will converge to a mode of the true posterior. In some

special cases, ηs will oscillate around the true mode. We will discuss the convergence

behavior below.

Define η(0)s as the initial expansion point, and η(i)
s as the value of ηs after i iterations.

Also, G(z0) and g(z0) are functions of the expansion point. Define G(i) = G(η(i)
s ) and

g(i) = g(η(i)
s ).

We can now write the iterative formula for the mode η(i)
s each mixture s

η(i+1)
s =

(
Σ−1

s + G(i)TΨ−1G(i)
)−1 ·
[
Σ−1

s µs + G(i)TΨ−1(yobs − g(i) + G(i)η(i)
s )
]
, (8.20)

or, alternately (add Σ−1
s ηi

s −Σ−1
s ηi

s term and re-arrange) to get

η(i+1)
s = η(i)

s + Φ(i)
s

[
Σ−1

s (µs − η(i)
s ) + G(i)η(i)

s Ψ−1(y − g(i))
]
. (8.21)

Notice that this equation represents a “tug-of-war” between the priors µ and the observa-

tion yobs. The term Σ−1(µ−η(i)) pulls the mode of the posterior towards the prior, while

the term G(i)η(i)Ψ−1(y − g(i)) pulls towards the observation. Similarly, the covariance

matrix for iteration i is

Φ(i)
s =

[
Σ−1

s + G(η(i)
s )TΨ−1G(η(i)

s )
]−1

. (8.22)
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• Initialization:

– z(0)
0 ← µs

• For each mixture s, iteratively update of Taylor series

expansion point:

– calculate g(z(i)
0 ) according to Equation (8.2)

– calculate G(z(i)
0 ) according to Equation (8.6)

– calculate Φ(i)
s according to Equation (8.22)

– calculate η(i)
s according to Equation (8.21)

– z(i+1)
0 ← η(i)

s

• Calculate Mixture weights.

– calculate qy(s) according to Equation (8.23)

Figure 8.3: The Algonquin Algorithm.

This equation represents the combination of the variance of the prior Σ and the variance

of interaction likelihood Ψ.

As shown in Figure 8.3, we iteratively evaluate Equations (8.21) and (8.22) until con-

vergence. Once the mixture component means and their variances have been iteratively

refined, we need to find the weights of the individual mixtures. We use the equivalent

but more efficient form (see derivation in Appendix C.1) of the equation for the mixture

weights:

qyobs
(s) = ρs =

exp(Ls)∑
j exp(Lj)

(8.23)
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where2

Ls = lnπs −
1

2
ln |2πΣs| +

1

2
ln |2πΦs|

− 1

2

{
(µs − ηs)

TΣ−1
s (µs − ηs)

}

− 1

2

[
(y − g)TΨ−1(y − g)

]
.

(8.24)

If we wish to use q for feature cleaning, the ρs are interpreted as mixture weights

of the GMM. If we wish to use the soft information paradigm we let the class variables

correspond to the states of the HMM and use the log(qyobs
(s)) directly, as we will see in

Chapter 10.

8.1.5 Convergence Properties of the Algorithm

As was noted before, the expansion point of the Taylor Series approximation is iteratively

improved through the use of the posterior means ηs as expansion points in subsequent

iterations. Intuitively, it is reasonable that we should linearize around the mode of the true

posterior, as this should lead to the minimum error in evaluation of marginal distributions.

It can be shown that once the algorithm has found the true mode of the posterior, it will

not deviate from that mode. Figure 8.4 shows how the approximate linear posterior

converges from the initial expansion point to the true mode in 4 iterations.

Empirical studies of the convergence of the approximate posterior modes ηs show

that in some cases the approximate mode repeatedly overshoots the true mode in a back

and forth convergence trajectory. This behavior is more likely to be observed when the

speech noise combination is a poor fit to the observed noisy speech feature yobs.
2This is Equation (A-56) after assuming that η(i)

s = η(i−1)
s i.e. z0 = ηs.
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Figure 8.4: Plot (a) shows the true posterior and the approximate posterior for iteration

0, i.e. when the Taylor series is expanded at the speech and noise prior means. Plot (b)

shows how the approximate posterior has aligned to the mode of the true posterior after

4 iterations.

It is possible to introducing a damping factor into the update equation for ηs in Equa-

tion (8.21) to reduce the overshoot and ensure convergence. However, recognition results

show that it only takes 2-3 iterations for the recognition accuracy reach its maximum

using the undamped algorithm. This indicates that convergence for the important com-

ponents of the approximate posterior is fast and accurate. Figure 8.5 shows the average

accuracy for the Aurora data set B (see Section 8.2) as a function of iteration for the stan-

dard algorithm and the algorithm with a damping factor of 0.5. Notice that the algorithm

has reached its maximum of 85.67% in just 2 iterations, while the damped algorithm

takes longer to converge. The recognition rate jumps from 78.41% when the prior means

are used as an expansion point to 85.63% after the first update.
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Figure 8.5: Solid line shows the accuracy as a function of iteration for Algonquin.

Dashed line shows accuracy for Algonquin with damping factor.

8.1.6 Variational Inference

We now discuss an alternate way of deriving the update equations for q, using the Varia-

tional framework. This view will be required for the discussion in the next Chapter.

The basic idea of variational inference[44] is to construct a function q that is a sim-

plified version of the distribution we are actually interested in i.e. p, and minimize the

discrepancy between these two functions.

When y is observed, the other random variables, x, n, h, sx, sn, sh are no longer

independent, which can make inference computationally expensive. A potential benefit

of the Variational method is to allow us to work with a factorized version of q. This

comes at the cost of increased approximation error, and reduced recognition accuracy.

The goal of variational inference [43, 10] is to minimize the relative entropy
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(Kullback-Leibler divergence) between q and p

K =
∑

{sx,sn,sh}

∫

{x,n,h}
qyobs

(x,n,h, sx, sn, sh) · ln
qyobs

(x,n,h, sx, sn, sh)

p(x,n,h, sx, sn, sh|yobs)
. (8.25)

The KL distance is usually defined as
∫

x p(x) log p(x)/q(x). The advantage of the above

formulation of the KL distance is that we can use a factorized q function that allows more

efficient inference.

8.1.7 The Negative Relative Entropy F

Notice that the denominator in Equation (8.25) is the posterior, whereas we have an

expression for the joint distribution in Equation(6.5). Herein lies one of the advantages

of this cost function, because minimizing K is equivalent to maximizing

F = ln p(y)−K =
∑

{sx,sn,sh}

∫

{x,n,h}
qyobs

(x,n,h, sx, sn, sh)

· ln p(x,n,h, sx, sn, sh,yobs)

qyobs
(x,n,h, sx, sn, sh)

. (8.26)

If we plug in the expressions for pl(x,n,h, sx, sn, sh,yobs) and

qyobs
(x,n,h, sx, sn, sh) into equation (8.26), and simplify, we arrive at an expres-
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sion for the free energy (see Appendix C.1),

F =− 1

2

∑

s

ρs ln |2πΨ|

−
∑

s

ρs

(
(yobs − g(z0) + G(z0)(z0 − ηs))

T

Ψ−1((yobs − g(z0) + G(z0)(z0 − ηs)
)

(8.27)

+
∑

s

ρsTr[G(z0)
TΨ−1G(z0)Φs] (8.28)

+
∑

s

ρs ln πs (8.29)

− 1

2

∑

s

ρs ln |2πΣs|

− 1

2

∑

s

ρs

{
(µs − ηs)

TΣ−1
s (µs − ηs) + Tr[Σ−1

s Φs]
}

(8.30)

−
∑

s

ρs ln ρs (8.31)

+
1

2

∑

s

ρs ln |2πΦs|− 3d. (8.32)

The derivation of this equation is given in Appendix C.1. To find the estimation formulas

for the parameters of q (i.e. the means ηs and variances Φs and the mixtures weights

qy(s)), we maximize F by differentiating with respect to the parameters and equating to

zero. When q is un-factorized, this leads to the same equations as we found before. The

derivations can be found in Appendix C.1.

8.2 MMSE Algonquin Results on Aurora Database

In order to assess the effectiveness of the the Algonquin method we apply it in the feature

cleaning paradigm. Once we have estimated the approximate posterior q we find the
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Figure 8.6: The figure shows the a comparison of the Algonquin methods to the VTS1

and SS.

MMSE estimate of the clean speech[16]

x̂ =

∫
xp(x|yobs)dx (8.33)

≈
∫

xq(x)dx =

∫
zx
∑

s

q(s)q(zx|s)dzx =
∑

s

ρsη
x
s , (8.34)

where zx is the x component of z. The cleaned speech vector x̂ is simply the weighted

sum of the mixture means of q. We give results for the using the Algonquin method on

set A of the Aurora data set [37]. Table 8.1 shows the recognition accuracy when using

the Algonquin in the MMSE paradigm.

The noise model contained a single Gaussian, which was estimated from the first 20

frames of each file.
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The average accuracy over all conditions is 82.22%. This is a reduction in relative

word error rate over spectral subtraction [7] of 60.35% and an reduction of 34.45% over

the first order Vector Taylor Series method (see Figure 8.6).

The increased recognition accuracy of Algonquin over VTS may be attributed to

a few factors. First is that we used a distribution for the interaction likelihood. This

may have some advantages since we take into account the uncertainty in the relationship

between x, n, h and y.

The other major difference between Algonquin and VTS is that Algonquin adjusts

the approximation for each observation yobs, whereas VTS finds a general distribution

over all y i.e. f(y) = p(y|sx).

8.3 Effect of Speech Model Size

The computational complexity of the algorithm scales linearly with the number of mix-

tures in the speech model p(x). One motivation for using the feature cleaning paradigm

rather than the model adaptation paradigm or soft information paradigm is that the com-

putation complexity can be much lower. If we use the model adaptation paradigm, we

need to update the distributions of each and every acoustic model. A large vocabulary

speech recognizer uses tens of thousands of Gaussians 3. Thus we would like to know

how the algorithm performs as a function of the size of the speech model. Figure 8.7

shows performance for a speech model of 4, through 256 mixtures. In the case of 4

through 256 mixtures, the models were trained directly on the clean speech training sets.

Notice that the accuracy has levelled off at around 64 mixtures, which is about 1/10 of

the mixtures used in the recognizer.
3The standard Aurora recognizer uses only 552 Gaussian mixtures
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Figure 8.7: Accuracy as a function of number of components in the speech model p(x).

8.4 Effect of Noise Model Size

In Figure 6.1 we saw that the variance of the noise distribution is larger than the variance

of the speech distribution. Figure 8.2 shows how we approximated the non-linear inter-

action likelihood with a linearized interaction likelihood. If we approximate the noise

distribution with multiple mixtures (see Figure 8.8), we have effectively expanded the

approximation of the likelihood at multiple points, and therefore done a better job of

approximating the curving posterior distribution. The result of doing this is shown in

Figure 8.9.

When using two mixtures, the Word Error Rate is reduced by 9.3% and 10.0% when

four mixtures are used (see Tables D.10 and D.11). Notice that we have not improved

how well the true noise is modelled, since we estimate a single mean and variance of the

noise from the first 20 frames. The reduction in word error rate is due to increasing the

precision of the approximation.
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Figure 8.8: (a) Approximation of a single Gaussian with a mixture of 2 Gaussians. (b)

Approximation of a single Gaussian with a mixture of 4 Gaussians.

8.5 Using Factorized Versions of q

For some probabilistic models, the variational framework allows one to use a q distri-

bution that is more computationally efficient to work with. Generally, one can increase

computational efficiency when computing marginals of a joint distribution by factoring

that distribution.

Figure 8.10 shows two factorizations that were investigated. The first factorization,

shown in Figure 8.10(b) involves discarding the the link between n and x. This is equiv-

alent to forcing each component of the q distribution to be an axis aligned Gaussian. We

can achieve this by dropping the diagonal matrices of the Covariance distribution of q in

Equation (8.10). This leads to savings in the computation of the Covariance matrix in

Equation (8.22). However, the number of component factors in the q distribution remains

the same. A large part of the computational burden is in computing g and its derivatives,

in Equation (8.2).

Figure 8.10(c) shows a different factorization that involves constraining the modes of
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Figure 8.9: (a) The non-linear posterior. (b) Linear approximation to using 2 mixtures to

represent noise model.

the q distribution. The number of free parameters is reduced from |sx|× |sn| to |sx|+ |sn|

(where |sx| is the number of states or classes in the speech model). Despite this, g and

its derivatives have to be computed as often as before. These two factorizations therefore

do not lead to significant computational savings. They do, however, adversely effect

recognition performance.

8.6 Discussion

In this chapter we introduced the Algonquin algorithm, which allows us approximate the

joint conditional distribution p(x,n,h|yobs).

We saw that this is a very effective method for feature cleaning and outperforms its
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Figure 8.10: Different q function factorizations

closest cousin, the VTS method by a substantial margin. It was argued that this was due

to the better approximation allowed by adapting to each observation individually.

The idea of defining an interaction likelihood and then constructing a tractable ap-

proximation is novel in itself and suggests other possible methods such as using Gaussian

basis functions to approximate the interaction likelihood [67], or efficient sampling.

We saw that increasing the size of the speech model of the cleaning algorithm was

helpful, but levelled off when the number of components reached 1/10th of the models

size of the recognizer. We also saw that the Gaussian approximation could be enhanced

by increasing the number of components in the noise model.

In this chapter, we used a noise model that was estimated from the first 20 frames of

the speech file. In the next chapter we introduce a method for learning the parameters of

the noise and channel models.
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Subway Car Babble Exhib. Ave.

Clean 98.93 99.12 98.99 99.32 99.09

20 dB 96.13 97.88 98.36 97.01 97.34

15 dB 92.54 95.65 97.08 94.57 94.96

10 dB 84.80 90.21 93.32 89.39 89.43

5 dB 68.74 75.15 84.16 80.07 77.03

0 dB 43.63 46.07 59.53 60.07 52.33

-5 dB 18.42 16.69 26.69 33.14 23.73

Average 77.17 80.99 86.49 84.22 82.22

Table 8.1: Accuracy for Set A. MMSE-Algonquin Algorithm after 2 iterations. The

speech model contained 256 mixtures. A single component noise model was used which

was estimated from the first 20 frames of each file.



Chapter 9

Learning Environmental Parameters

In the preceding chapters, we used a simple way to estimate the parameters of the noise

model, we simply took the first 20 frames of each file and calculated a mean and variance.

This works because there is a short pause before the onset of speech in each file, but the

method gives a sub-optimal estimate of the parameters of the noise model, and is not

applicable to real world applications.

It is clear that the better the noise and channel models are, the better we expect a

RASR method will perform, e.g. if we knew the exact noise signal, we could simply

subtract it off. In Chapter 8 we saw that increasing the number of components in the

GMM noise model enhances the precision of the approximation. Increasing the number

of components also allows us to model the noise more precisely, and thus reduce the

classification ambiguity. For non-stationary noise and noise that does not manifest itself

as a Gaussian in the log-spectrum domain, we expect that using a multi-component noise

model could be beneficial.

We can get an estimate of the upper limit of performance by providing the algorithm

with a “perfect” estimate. This estimate can be found from the noise component alone

82
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of a noisy speech file. If we do this using a single component noise model for Set A, we

get a WER of 14.04% (85.96% accuracy) which is a reduction in WER from the baseline

WER of 17.78% (82.22% accuracy) of 21.03%. Thus, we would like a better way to

estimate the parameters of the noise and channel models.

For real world applications, we could use a speech/non-speech classifier to find

frames for use in the noise estimate[7, 75]. A disadvantage of this approach is that

any classifier is prone to errors, and in addition, we discard information about the noise

contained in frames that also contain speech. Alternatively, it is possible to update the

parameters without the use of an explicit speech/non-speech detector[1, 5].

In this chapter we discuss how the parameters of the noise and channel models can

be estimated from the complete data, using a Generalized EM method[24, 52].

9.1 Joint Learning of Noise and Channel Distortion

Recall that the goal of variational inference is to minimize the relative entropy[10]

(Kullback-Leibler divergence) between q and pl

K =
∑

{sx,sn,sh}

∫

{x,n,h}
q(x,n,h, sx, sn, sh) · ln q(x,n,h, sx, sn, sh)

pl(x,n,h, sx, sn, sh|yobs)
. (9.1)

Before we used this loss function to learn the parameters of q. We will now use it to learn

the parameters of p When we estimate the parameters of the noise and channel models,

we assume that the noise is stationary, and that we can use all the frames of a speech file1.

Thus, when evaluating the negative relative entropy we sum over observation frames also.
1Notice that this is not the same as trying to adapt to the noise conditions online, e.g. using a window

of preceding frames or a forgetting factor[5].
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In addition, we assume that ln pl(Y) ≈ ln p(Y). Writing the negative relative entropy as

F = ln pl(Y)−K =

∑

t

∑

{sx,sn,sh}

∫

{x,n,h}
q(x,n,h, sx, sn, sh) · ln pl(x,n,h, sx, sn, sh,y)

q(x,n,h, sx, sn, sh)
, (9.2)

we see that it is comprised of two components; ln pl(Y) expresses how well the noisy

data is modelled and K expresses how well q matches pl. K is always positive or 0 and

will only be 0 if pl exactly matches q. If we maximize F with respect to the parameters

of pl, and assume that K remains constant then we are maximizing a lower bound on

ln pl(Y)

F ≤ ln pl(Y) ≈ ln p(Y). (9.3)

In words, we are maximizing a lower bound on the log-probability of the observed data

under the model. Clearly, K will increase if the parameters of pl are changed, because

we are pulling pl away from q. As a consequence, for each iteration of the algorithm,

ln pl(Y) increases more than the increase in F , i.e. it will increase by ∆F + ∆K.

9.1.1 A Generalized EM Method for Parameter Adaptation

We can learn the parameters of the noise and speech model using a generalized EM

method[65]. The algorithm alternates between:

1. Updating the variational parameters ρ(t)
sxsnsh , η(t)

sxsnsh , Σ(t)
sxsnsh for each frame t =

1, . . . , T , as discussed in Chapter 8, and

2. Maximizing F with respect to the noise model parameters πn, µn and Σn and

channel model parameters πh, µh and Σh.

The complete algorithm is shown in Figure 9.7. In the next two sections we derive

the re-estimation formulas for the parameters of p(n) and p(h).
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9.1.2 Learning p(n)

To re-estimate the parameters of the models, we can use a generalized EM algorithm.

Recall the form of q(z(t), s) and p(z(t), s,y(t)) where we use s as a shorthand for

{sx, sn, sh}:

q(z(t), s) =
∑

s

ρ(t)
s N(z(t); η(t)

s , Φ(t)
s ) (9.4)

p(z(t), s,y(t)) =
∑

s

N(y(t); g(z(t)), Ψ)πsN(z(t); µs, Σs). (9.5)

The algorithm derived in in Chapter 8 corresponds to the E step in the Generalized

EM algorithm. The M step involves finding πn,µn and Σn that maximize the negative

relative entropy

{π̂n, µ̂n, Σ̂n} = argmax
π,µ,Σ

∑

t

∑

sx,sn,sh

∫

z

q(z(t), s) ln
p(z(t), s,y(t))

q(z(t), s)

= argmax
πn,µn,Σn

∑

t

∑

sx,sn,sh

∫

z

q(z(t), s) ln p(z(t), s,y(t)),

since the term q(z(t), s) ln q(z(t), s) is not dependent on the parameters of p(z). Filling in

the form of p(z(t), s,y(t)) we get

{π̂n, µ̂n, Σ̂n}

= argmax
πn,µn,Σn

∑

t

∑

sx,sn,sh

∫

z

ρ(t)
s N(z(t); η(t)

s ,Φ(t)
s ) ln N(z(t); g(z(t)),Ψ)πsN(z(t); µs,Σs)

= argmax
πn,µn,Σn

∑

t

∑

sx,sn,sh

∫

z

ρ(t)
s N(z(t); η(t)

s ,Φ(t)
s ) ln πsN(z(t); µs,Σs),
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again, since N(z(t); g(z(t)),Ψ) is not dependent on the parameters. Continuing,

{π̂n, µ̂n, Σ̂n}

= argmax
πn,µn,Σn

∑

t

∑

sx,sn,sh

ρ(t)
s ln πs

+
∑

t

∑

sx,sn,sh

∫

z

ρ(t)
s N(z(t); η(t)

s ,Φ(t)
s )

[
−1

2
|2πΣs|−

1

2
(z(t) − µs)

TΣ−1
s (z(t) − µs)

]

(9.6)

and finally

{π̂n, µ̂n, Σ̂n} = argmax
πn,µn,Σn

∑

t

∑

sx,sn,sh

ρ(t)
s ln πs −

1

2
ρ(t)

s ln |2πΣs|

− 1

2

∑

t

∑

sx,sn,sh

ρ(t)
s

[
(µs − η(t)

s )TΣ−1
s (µs − η(t)

s ) + Tr[Σ−1
s Φ(t)

s ]
]
.

We now find the re-estimation formulas for π̂n, µ̂n and Σ̂n in turn.

To maximize with respect to πsn , we use a Lagrange multiplier and arrive at

πsn =

∑
t

∑
sx,sh

ρ(t)
sx,sn,sh

T
, (9.7)

where T is the number of frames. In words, the update of πsn is simply the average over

time of the corresponding q distribution weights.

Maximizing w.r.t. µs we arrive at

µsn
=

∑
t

∑
sx,sh

ρ(t)
sx,sn,shη

n,(t)
sx,sn,sh

∑
t

∑
sn,sh

ρ(t)
sx,sn,sh

, (9.8)

where we have used the additional superscript n in ηn,(t)
sx,sn,sh to designate the n component

of the mean vector η = [ηxT ηnT ηhT
]T . This expressions is simply a weighted sum of

noise component of the the mixture means η(t)
sx,sn,sh of the q distribution. In the following

derivations, we omit the superscript n.
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Maximizing w.r.t. Σ−1
s is a little more tricky. We first need to use the following

identity:

|X|−1 = |X−1| (9.9)

and write

Σ̂−1
sn

= argmax
Σ−1

s

∑

t

∑

sx,sh

ρ(t)
s ln πs −

1

2
ρ(t)

s ln |2πΣs|

− 1

2

∑

t

∑

sx,sn,sh

ρ(t)
s

[
(µs − η(t)

s )TΣ−1
s (µs − η(t)

s ) + Tr[Σ−1
s Φ(t)

s ]
]

= argmax
Σ−1

s

∑

t

∑

sx,sn,sh

ρ(t)
s

[
ln |Σ−1

s |− (µs − η(t)
s )TΣ−1

s (µs − η(t)
s ) + Tr[Σ−1

s Φ(t)
s ]
]
.

(9.10)

Next we take the derivative w.r.t. Σ−1
s . We need the following identities:

δ

δX
Tr[XA] = A (9.11)

δ

δX
|X| = |X|X−T (9.12)

δ

δx
aTxb = bTa (9.13)

Now we can continue

0 =
δ

δΣ−1
sn

∑

t

∑

sx,sh

ρ(t)
s

[
ln |Σ−1

s |− (µs − η(t)
s )TΣ−1

s (µs − η(t)
s ) + Tr[Σ−1

s Φ(t)
s ]
]

=
∑

t

∑

sx,sh

ρ(t)
s

[
Σs − (µs − η(t)

s )(µs − η(t)
s )T + Φ(t)

s

]
,

(9.14)

so
∑

t

∑

sx,sh

ρ(t)
s Σsn =

∑

t

∑

sx,sh

ρ(t)
s

[
(µs − η(t)

s )(µs − η(t)
s )T + Φ(t)

s

]
(9.15)

and finally we find the update equation

Σn
sn

=
1

∑
t

∑
sx,sh

ρ(t)
s

∑

t

∑

sx,sh

ρ(t)
s

[
(µn

s − ηn,(t)
s )(µn

s − ηn,(t)
s )T + Φnn,(t)

s

]
(9.16)
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9.1.3 Learning p(h)

The re-estimation equations for p(h) are analogous. The update for the mixture weights

is

πsh
=

∑
t

∑
sx,sn

ρ(t)
sx,sn,sh

T
. (9.17)

The update equation for the mixture means is

µh
sh

=

∑
t

∑
sx,sn

ρ(t)
sx,sn,shη

h,(t)
sx,sn,sh

∑
t

∑
sn,sn

ρ(t)
sx,sn,sh

, (9.18)

and the update equation for the mixture variances is

Σh
sh

=
1

∑
t

∑
sx,sn

ρ(t)
s

∑

t

∑

sx,sn

ρ(t)
s

[
(µh

s − ηh,(t)
s )(µh

s − ηh,(t)
s )T + Φhh,(t)

s

]
. (9.19)

9.2 Convergence Properties

In order to disentangle and learn the parameters of the noise and channel models, the

algorithm relies on an accurate speech model p(x) as well as a model for how speech,

noise and the channel are combined p(y|x,n,h).

In order to assess the susceptibility of the algorithm to pathological behavior such

as slow or stalled convergence, local minima, and saddle points, the algorithm was run

on synthetic data. The data was generated by first choosing reasonable parameters for

the noise model and estimating the channel parameters for the MIRS frequency response

characteristic. Next samples were generated from the speech model, noise model and

channel model and combined according to Equation (5.19). The goal of the algorithm

was to learn the chosen parameters for the noise and channel models, from the synthetic

data.
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Figure 9.1: Convergence of µh as function of iteration, for joint estimation of noise and

channel distortion (simulated data). This shows the rapid convergence of the noise model

parameters (within 3 iterations).

Figure 9.1 shows the value of µh as a function of iteration. In this case, the algorithm

learns the channel model quickly, i.e. within about 3-5 iterations.

Figure 9.2 shows a pathological case for learning (i.e. recovering) the noise model

parameters. The true noise model has a relatively flat characteristic with a value of around

6. The noise model was initialized with µn = 0 and Σn = 10. After 50 iterations the µn

values for the higher log-spectrum coefficients are still close to 0.

This is due to the algorithm finding and incorrect but plausible “explanation” of the

observed signal. The combination of the model for the sound /s/ and the noise model

at iteration 50 (see Fig. 9.2) produces a relatively good fit to the observed output. The

algorithm eventually recovers and learns the correct model. This shows that the algorithm

is susceptible to poor initialization.

Such pathological behavior was not observed when the algorithm was run on real

speech data and the noise model was initialized with the mean and variance of the first
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Figure 9.2: Convergence of µn as function of iteration, for joint estimation of noise

and channel distortion (simulated data). This shows a pathological case where the noise

model has been poorly initialized. Such behavior was not observed for real speech data.

20 frames of the speech file.

The convergence rate is greatly dependent on the variance of the initial noise and

channel models. Convergence is much slower if the initial variance is set to a small

value.

9.3 Results

To assess the performance of the learning algorithm, we report results for sets A and C.

In the case of set A the only the parameters of the noise model were. For set C, both the

parameters of the noise and channel models were updated.
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Figure 9.3: Convergence of log-likelihood as a function of iteration for the data shown

in Figure 9.2.

9.3.1 Set A: Learning p(n)

Accuracy as a function of iteration for set A Figure is shown in Figure 9.4. A single

mixture noise model was used. The noise mean and variance were estimated from the

first 20 frames, and then the variance was multiplied by 3 in order to avoid local minima

and speed up convergence.

The word error rate goes from 17.78%WER (82.22% accuracy) to 15.85%WER

(84.15% accuracy) at iteration 4 which is a relative reduction in WER of 10.85%. This

is a considerable improvement over using the 20 frame estimate. However, we do not

reach the “theoretical minimum” WER of 14.04% that was obtained by estimating the

noise model on the true noise.

Notice that the algorithm reaches a maximum in accuracy after 4 iterations and then
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Figure 9.4: Recognition accuracy as a function of iteration for Set A using a single

mixture noise model. The horizontal line is the non-adaptive result (82.22%) of using

the first 20 frames of the speech file to estimate the noise model.

starts a slow decent. Since the algorithm is attempting to maximize the log probability of

the data under the model, this interesting behavior is perhaps attributable to the algorithm

using the noise model to better account for deficiencies in the speech model or variation

between speakers.

9.3.2 Set C: Joint Learning of p(n) and p(h)

We used set C of the Aurora task to evaluate the performance and convergence character-

istics of the algorithm to simultaneously learn the noise and channel model. Recall that
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set C has been filtered to simulate a MIRS frequency response characteristic.
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Figure 9.5: Recognition accuracy as a function of iteration for Set C using a single mix-

ture noise model and single mixture channel model. The baseline accuracy is 76.37% for

the non-adaptive algorithm, while the adaptive algorithm reaches a maximum of 84.42%

at iteration 27.

Figure 9.5 shows the results for jointly learning the noise and channel models. Notice

that the convergence rate is slower in this case. This is due to the initialization of the

channel model, that will be described in grater detail below. The algorithm reaches a

maximum of accuracy 84.42% at iteration 27. The baseline of 23.63% WER (76.37%

accuracy) was achieved using the standard method of using 20 frames to estimate a noise

model, but no compensation for channel mismatch was used2. The algorithm algorithm
2This is perhaps an unfair comparison, since using CMN or RASTA would provide a more reasonable
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reaches a maximum of 84.42% at iteration 27, which is a relative reduction in WER of

32.92%.

In order to asses the relative importance of the two distortion sources i.e. noise and

channel, and the performance of the algorithm, we ran three experiments. In the first, the

algorithm was constrained to update only the channel model, in the second the algorithm

was constrained to update only the noise model and in the third, both channel and noise

models were learned.

Figure 9.6 shows the accuracy results for Subway Noise at 10dB SNR. Results are

shown for adaptation of the channel model alone (diamonds), the noise model alone

(triangles) and joint estimation of noise and channel distortion (squares). In each case

the initial noise model was estimated from the first 20 frames of the a speech file. The

initial channel distortion was set to µh = 0 with σ2
h = 1. In these experiments, the noise

and channel models were single multivariate Gaussians.

First note the results when the algorithm was constrained to adapt only the channel

model (i.e. noise model was estimated from first 20 frames and not adapted). In this

case, the channel model was initialized to µh = 0 and σ2
h = 1. The accuracy goes from

74.42% to a maximum of 86.09%. The non-adaptive algorithm that does not take into

account the channel distortion (µh = 0, σ2
h = 1 · 10−4) achieves accuracy of 84.36% for

this condition.

A second case was run where only the noise model was adapted. The initial noise

model was estimated from the first 20 frames, and the variance was multiplied by 3, in

order to speed up convergence. The channel model was set to µh = 0 and σ2
h = 1 · 10−4.

The recognition accuracy goes from 81.95% to a maximum of 87.23% at iteration 19.

The recognition rate declines after iteration 19. This interesting effect may be due to the

baseline
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Figure 9.6: Recognition accuracy as a function of iteration. Diamond-line shows ac-

curacy when adapting h alone, triangle-line shows n-adaptation and square-line shows

accuracy for joint n and h adaptation. Horizontal line shows result for non-adaptive

algorithm.

algorithm attempting to compensate for the channel mismatch with the noise model.

The third case shown in Figure 9.6 is that of joint adaptation of noise and channel. In

this case, the accuracy goes from 73.01% to a maximum of 87.78% at iteration 37. This

is 0.55% higher than the accuracy for noise adaptation alone at iteration 19 (87.23%). In

comparison to the non-adaptive algorithm, the absolute drop in word error rate is 3.4%

and the relative drop of is 21.8%. This illustrates well the effectiveness of joint noise and

channel adaptation.
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These results indicate that the algorithm can successfully and simultaneously learn

the additive distortion due to the channel and the non-linear distortion due the noise, and

thus successfully untangle these two types of distortion.

9.4 Discussion

When there is no channel distortion, the algorithm reached a maximum quickly, i.e.

within 4-5 iterations. When both the noise model and channel models had to be learned,

the convergence rate was slower. This is attributable to the naive initialization of the

channel model. More clever methods can be used to start the algorithm off closer to the

convergence point.

In this chapter we have shown how the noise and channel models can be simulta-

neously learned from the complete data. By doing this, we were able to improve the

results over the baseline considerably and get relatively close to the “theoretical mini-

mum”. One of the advantages of this method is that we do not need to classify frames

into speech/non-speech frames in order to estimate the environment models.
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Iterate:

E step

• Initialization:

– z(0)
0 ← µ

• Iterative update of Taylor series expansion point:

– calculate g(z(i)
0 ), Equation (8.2)

– calculate G(z(i)
0 ), Equation (8.6)

– calculate Φ(i)
s , Equation (8.22)

– calculate η(i)
s according to Equation (8.21)

– z(i+1)
0 ← η(i)

s

• Calculate Mixture weights.

– calculate qy(s) according to equation(8.23)

M step

• calculate πsn , µsn and Σsn according to Equations (9.7),

(9.8) and (9.16).

• calculate πsh
, µsh

and Σsh
according to Equations (9.17),

(9.18) and (9.19).

Figure 9.7: The Generalized EM Algorithm for learning environment parameters.



Chapter 10

Taking Uncertainty into Account

Methods that attempt to clean the features, such as Spectral Subtraction, MMSE VTS

and MMSE-Algonquin return a point estimate X̂ of the clean speech feature for a par-

ticular frame. It is an intuitively appealing idea to use a distribution instead of a point

estimate[51].

For example, if the corrupting noise is a telephone ring-tone, the ring will corrupt a

subset of the features, i.e. those with frequencies corresponding to the frequency of the

ring-tone. We would like the recognizer to discount or even overlook those corrupted

feature components.

An algorithm such as MMSE-Algonquin attempts to repair those features that have

been masked by the ring, by employing the prior information contained in the speech

model and the noise model. The speech model of the cleaning algorithm is a less accurate

version of the speech (language and acoustic) models of the recognizer. Since the true

features are masked, the repaired features may be in error.

98
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10.1 Distributions as Observations

Instead of repairing the corrupted features we would like to pass to the recognizer infor-

mation about the severity of the distortion of each component of the feature vector e.g.

using the variance of the estimate of x. Instead of passing x̂ =
∫
x xp(x|yobs), we could

pass f(x) = p(x|yobs). The front end of the recognizer would then calculate:

score =

∫

x

p(x|yobs)p(x|s) = E[p(x|y)]. (10.1)

However, this is difficult do justify.

When discussing inference in the generative model for noisy speech, in Chapter 4,

we noted that the message that gets passed from the x to s in the graph of Figure 4.3, is

the function f(x) = p(yobs|x). One approach to taking uncertainty into account would

therefore be to pass to the recognizer f(x) = p(yobs|x), instead of x̂, where yobs is

the noisy observation. The end result is that instead of using p(x|s) as the observation

likelihood, we use p(y|s), since

p(y|s) =

∫

x

p(yobs|x)p(x|s). (10.2)

The form of f(x) = p(yobs|x) is shown in Figures 10.1 and 10.2 for two different values

of the variance of the noise.

We can use the message passing paradigm to find the exact form of p(yobs|x) in

the log-spectrum domain. Assuming the relationship between y, n and x is exact, i.e.

n = log(exp(y)− exp(x)) so p(y|x, n) = δ(n− log(exp(y)− exp(x))) then

p(yobs|x) =
exp(yobs)

exp(yobs)− exp(x)
N(log(exp(yobs)− exp(x)); µn,σn). (10.3)

In the log-spectrum domain, the message f(x) = p(yobs|x) that needs to be sent to the

recognizer is shown in Figures 10.1 for noise with large variance (σn = 1) and in 10.2
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Figure 10.1: Messages f(x) = p(y|x) for y equal to 4, 5.5 and 7. The noise distribution

has mean 5 and standard deviation 1

for noise with smaller variance (σn = 0.2). These messages are clearly not Gaussian.

The most “non-Gaussian” aspect is that the tail that goes to −∞. The figures suggest

that the shape of the message falls into two or three regimes, depending on the relative

values of yobs and µn.

If y is larger than n by some margin, the message becomes approximately Gaussian.

The integral over this Gaussian goes to 1. Thus, as the observation gets larger than

the noise, the message approximates a delta function at y. In this region, using a point

estimate for x, e.g. by spectral subtraction would produce a similar result.

When y is smaller than µn the message approximates a Heavyside function, with a

smooth roll-off. Thus, any two speech distribution who’s mass is substantially below the
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Figure 10.2: Messages f(x) = p(y|x) for y equal to 4, 5.5 and 7. The noise distribution

has mean 5 and standard deviation 0.2

noise mean, will produce a similar score when convolved with this message. In this case,

we do not give preference to different distributions that are below the noise level.This is

precisely the essence of this method, and the potential strength over that of SS and other

methods that produce point estimates.

10.2 The Effect of Uncertainty

When there is noise and channel distortion in the environment, we observe corrupted

features Y instead of X. The environmental noise process introduces both bias and fun-

damental uncertainty. Bias shifts the classification boundaries, but can be accounted for.



CHAPTER 10. TAKING UNCERTAINTY INTO ACCOUNT 102

However uncertainty increases the overlap of class conditional likelihood distributions,

and thus the classification error increases. As was discussed in Chapter 3, the optimal

classification strategy is based on using the posterior of the noisy speech p(s|Y). By

the data processing inequality[10] it is impossible to gain more information about s by

manipulating y e.g. by cleaning y to produce x̂.
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Figure 10.3: The plots show the log observation likelihood for the states s in the word

models for ’two’,’three’ and ’four’ for frame 30 of file MAH 3A. This file contains the

utterance ’three’. The plots show clean speech log(p(x|s)), cleaned speech log(p(x̂|s))

and the soft information score which is approximately equal to log(p(y|s)) + const.

Intuitively, the effect of noise is to reduce our certainty that an observation belongs

to one class rather than the other. Figure 10.3 shows observation scores for a particular

speech frame. At the top, the log observation likelihoods log(p(x|s)) of the clean speech

frame are shown. The plot shows the scores for each of the 16 states of the models
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’two’, ’three’ and ’four’. The observation frame is taken from the middle of the word

’three’. The bottom two plots show observation scores for the same frame with noise

at 5dB SNR. The middle plot shows the log observation likelihood log(p(x̂|s)) of the

cleaned speech frame and the bottom plot shows the soft information score which is

approximately equivalent to log(p(y|s))1. Notice that p(x̂|s) looks more like p(x|s), but

the range of scores for the soft information case is smaller. This is in accordance with

our intuition that the “specificity” of the feature is smaller when there is noise in the

observation. Instead of remaining neutral as to which class the observation belongs, a

cleaning method is forced to choose a single x̂, and it may amplify the error in the case

of a wrong choice.

10.3 Uncertainty Decoding

Figure 10.1 shows the form of f(x) = p(yobs|x). As noted before, if we have two

acoustic classes with distributions that lie below the noise level, both distributions will

be convolved with the tail of the likelihood, and thus give similar scores. This is exactly

what we would like, since the recognizer should not use this information to differentiate

between the two speech classes2. A problem with this approach is that the form of f(x) =

p(yobs|x) is very non-Gaussian, and it is therefore computationally expensive to evaluate

the integral in Equation (10.2) numerically. Computationally attractive approximations

are possible, e.g. using splines or a mixture of Gaussian.
1The plot shows log(qy(s)/p(s)) which is approximately equal to

log(p(y|s)/p(y)) = log(p(y|s)) + const.
2The Noise Masking technique [49] had a similar motivation, but was formulated in a non-probabilistic

way.
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Alternatively, we can estimate p(xi|yi,obs)/p(xi), since

p(s|Y) = p(Y)−1p(s0)
∏

i

p(yi,obs|si) · p(si|si−1) (10.4)

≈ p(s0)
∏

i

p(yi,obs|si) · p(si|si−1)

p(yi,obs)
(10.5)

= p(s0)
∏

i

∫
p(yi,obs|xi)p(xi|si)dx

p(yi,obs)
· p(si|si−1) (10.6)

= p(s0)
∏

i

∫
p(xi|yi,obs)

p(xi)
p(xi|si)dx · p(si|si−1). (10.7)

The approximation above is a result of assuming that p(Y ) ≈
∏

i p(yi,obs). In this

case, the goal is to estimate p(xi|yi,obs)/p(xi) in a form that allows for the integral

to be calculated easily, e.g. in a Gaussian form. Some noise cleaning methods e.g.

MMSE-Algonquin, employ Gaussian speech priors p(xi) and estimate a Gaussian pos-

terior p(xi|yi,obs), and can thus be used in this context since p(xi|yi,obs)/p(xi) is also

Gaussian. Note however that the true form of p(xi|yi,obs)/p(xi) is proportional to

f(xi) = p(yi,obs|xi), shown in Figure 10.1.

In Chapter 3, a second alternative to the model adaptation method was proposed that

also preserve the information about the uncertainty of the observations. This method

relies on estimating the soft information score p(si|yi,obs)/p(si)3 and returning this value

to the recognizer. The recognizer then calculates

p(s|Y) ≈ p(s0)
∏

i

p(yi,obs|si)

p(yi,obs)
· p(si|si−1) = p(s0)

∏

i

p(si|yi,obs)

p(si)
· p(si|si−1). (10.8)

Note that we divide by p(si) in Equation (10.8). Speech recognition systems em-

ploy complex speech models including language models and word or phone HMMs that

encode the transition probabilities p(si|si−1 . . . s0) between states. In the case of Algo-

nquin, speech is modelled by a Gaussian Mixture Model. By deferring the hard decision
3In fact, Equation (8.17) gave pl(yobs|s) directly which is an approximation to p(yobs|s).
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to the decoding step of the recognizer, we avoid making a decision based on the much

weaker state transition model of the cleaning algorithm. The MMSE version of Algo-

nquin uses a GMM to model speech and therefore does not use state transition probabili-

ties. We remove the effect of the “language model” of the cleaning algorithm by dividing

by p(s) in Equation (10.8).

Thus, if we can approximate p(si|yi,obs)/p(si) we can preserve information about

uncertainty in the decoder. The Algonquin framework allows us to do this.

The two paradigms for robust speech recognition that have been mentioned before

i.e. the feature domain paradigm and the model domain paradigm, were characterized by

their relation to the block diagram of a speech recognizer (see Figure 2.1). If we wish to

use soft information scores, we need to alter or replace the Acoustic scores block.

10.4 Estimate of p(s|y)/p(s)

The Algonquin framework is well suited to demonstrate the importance of retaining un-

certainty information in the decoding of speech. While some noise robustness method-

ologies, such as spectral subtraction, use point estimates for the noise process, Algonquin

used Gaussian mixture models to model both speech and noise. The uncertainty intro-

duced by the noise process is captured in the variance parameters of the noise model.

Algonquin uses a variational method to produce an approximation qy(x) to the pos-

terior p(x|yobs). The approximate posterior is used to calculate a point estimate of the

clean speech features x̂ through an MMSE estimate:

x̂ =

∫
xp(x|yobs)dx ≈

∫
x
∑

s

qy(s)qy(x|s)dx (10.9)

Using the cleaned features x̂, the observation likelihood calculated by the recognizer is
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thus p(x̂|s). In order to use soft information, we require the evaluation of

p(s|yobs)

p(s)
≈ qy(s)

p(s)
, (10.10)

which is substituted for p(x̂|s) in the recognizer. As we will see below p(s|yobs) ≈ qy(s)

so all the components required to calculate the soft information score in Equation (10.10)

are available from the calculation of the point estimate in Equation (10.9).

The Algonquin framework employs Gaussian mixture models to model the speech

and noise in the log-spectrum domain. Recall the joint distribution over noisy speech y,

speech x, speech class sx, noise n, noise class sn is

p(y,x,n, sx, sn) = p(y|x,n)p(sx)p(x|sx)p(sn)p(n|sn)p(sh)p(h|sh)

= N (y;g
([

xTnThT
]T )

,Ψ)·πx
sxN (x; µx

sx ,Σx
sx)·πn

snN (n; µn
sn ,Σn

sn)·πh
shN (h; µh

sh ,Σh
sh).

(10.11)

For the current frame of noisy speech y, Algonquin approximates the posterior using a

simpler, parameterized distribution, q:

p(x,n,h, sx, sn, sh|yobs) ≈ qy(x,n,h, sx, sn, sh). (10.12)

The q function is a mixture of Gaussians:

qy(x,n,h, sx, sn, sh) =
∑

{sx,sn,sh}

qy(sx, sn, sh)qy(x,n,h|sx, sn, sh), (10.13)

where the qy(sx, sn, sh)s serve as mixture weights. Note that

p(sx|y) ≈ qy(sx) =
∑

sn,sh

qy(sx, sn, sh) (10.14)

which is used in the calculation of the soft information score in Equation (10.10).

The variational parameters of q are adjusted to make this approximation accurate,

and then q is used as a surrogate for the true posterior when computing x̂ and calculating

the soft information score qy(s)/p(s).
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In Chapter 8 we derived the expression for qyobs
(s):

qyobs
(s) = ρs =

exp(Ls)∑
j exp(Lj)

(10.15)

where

Ls = lnπs −
1

2
ln |2πΣs| +

1

2
ln |2πΦs|

− 1

2

{
(µs − ηs)

TΣ−1
s (µs − ηs)

}

− 1

2

[
(y − g)TΨ−1(y − g)

]
.

(10.16)

This term can be viewed as the integral of over x, n and h of the joint posterior

distribution p(x,n,h, s|yobs) and is an approximation to p(s|yobs). This expression re-

sembles the expression for the scaling term in the multiplication of two Gaussians (see

A-6), which we would get using a Laplace type method. We are in fact evaluating

qyobs
(s) =

∫
[pl(yobs|x,n,h)] · [p(x,n,h, s)] /p(yobs)dxdndh (10.17)

the integral over the multiplication of the interaction likelihood pl(yobs|x,n,h), which

is a “one dimensional” Gaussian and the prior p(x,n,h, s), which is a multidimensional

Gaussian.

In the noise free case (yobs = x), we would like the soft information score to be

equal to the acoustic score for clean observations. The Acoustic score block in Figure

2.1 calculates the log-likelihood acoustic scores:

f(s) = log(p(x|s)) = −1

2
log |2πΣx

s |−
1

2
(µx

s − x)TΣx
s
−1(µx

s − x) (10.18)

For the noise free case, posterior modes are equal to the observation and thus ηs ≈ x.

Also, y ≈ g and Φs ≈ 0 so

Ls,noise free ≈ −1

2
ln |2πΣs|−

1

2
(µs − ηs)

TΣ−1(µs − ηs) + lnπs

(10.19)
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which shows that in the noise free case, the normalized score is the same as we would

get by passing the clean feature to the recognizer.

10.5 Experiments

The Aurora data set is supplied with a standard Mel-frequency Cepstrum Coefficient

(MFCC) front end and the CU-HTK speech recognizer. For the experiments reported

here, we used filter-bank parameters without delta or acceleration features. These fea-

tures were produced by altering the standard front end such that it writes out the log-Mel-

spectrum values just prior to taking the DCT. It is known that MFCC parameters perform

considerably better than filter-bank parameters (see Figure D.1).

The standard HTK recognizer accepts observation features x and calculates acoustic

scores internally based on the acoustic models p(x|s). Experiments based on feature

cleaning and model adaptation can be performed without altering the recognizer, i.e. by

supplying x̂ or altering p(x|s) respectively. However, the uncertainty decoding paradigm

relies on the fusion of the noise adaptation stage and calculation of acoustic scores. Thus,

the HTK recognizer had to be altered to accept the scores qyi(si)/p(si) calculated by the

algorithm. These scores were substituted for p(xi|si) in the recognizer.

Twelve speech models are used in the Aurora task, ’zero’ though ’nine’, ’oh’ and

silence. Each model has 16 states and the silence model has 3 states, for a total of 179

states. Thus, qyi(si)/p(si) had to be calculated for each state si for each frame i, as

described above.

The MMSE-Algonquin algorithm requires a GMM speech model p(x). p(x) was

constructed from the HMM models trained by HTK. The mixture means µx
sx and vari-

ance Σx
sx (see Equation (10.11)) were copied directly from the acoustic models of the
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Figure 10.4: Average recognition accuracy as a function of signal to noise ratio. The

three conditions shown are soft information i.e. using qyi(si)/p(si) in the recognizer,

using MMSE Algonquin for feature cleaning and no processing of the corrupted features.

recognizer. To find the mixture weights πx
sx , a 179× 179 state transition matrix was first

constructed from the language model and the transition matrices of the HTK HMM word

models. Then the stationary distribution of the transition matrix was found and multi-

plied by the mixture weights of the Gaussian components of the acoustic models. This

resulted in a 552 component Gaussian mixture model.

The noise model consisted of a single component multivariate Gaussian. A different

model was estimated for each utterance, from the first 20 frames of that file.



CHAPTER 10. TAKING UNCERTAINTY INTO ACCOUNT 110

10.6 Results

The calculation of the soft information score in Equation (10.10) and the point estimate

Equation (10.9) share almost all of the same steps. We can therefore provide a compari-

son that differs only in this aspect (i.e. point estimate vs. soft information), while holding

all other aspects constant, such as methodology, approximation errors, speech and noise

models etc.

Figure 10.4 shows a comparison of the techniques of passing a point estimate of clean

speech to that of taking uncertainty into account by using qyi,obs
(si)/p(si). As can be seen

recognition accuracy improves considerably for all SNRs except for clean speech where

it is slightly reduced. For example, at 15dB, the average accuracy goes from 78.71%

accuracy to 88.29% which is an increase in accuracy of 9.58% and a relative drop in

Word Error Rate (WER) of 45.01%. As expected, the use of soft information is most

effective at intermediate SNRs. For clean speech, there is a drop in accuracy of 0.49%

or 10.62% relative WER. At “infinite” SNR, we should ideally leave the parameters

unchanged. Approximation error and error in estimation of the noise parameters seems

to have a greater adverse effect on the soft information method.

The WER for MMSE-Algonquin is 35.88% while for soft-Algonquin the WER is

reduced to 25.1%. The relative reduction in WER is shown in Table 10.1 (see Tables

D.13 and D.14 for absolute WER). The relative reduction in average WER for noise

conditions 20dB through 0dB is 28.31%.

Recall that the WER was 17.78% for the MMSE-Algonquin algorithm when using a

recognizer with cepstrum domain acoustic models. This shows the effectiveness of the

DCT and time derivatives and the importance of using the soft information paradigm in

conjunction with these linear transforms.
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Subway Car Babble Exhibition Average

clean -17.78% -8.52% -5.95% -11.26% -10.62%

20dB 48.53% 34.42% 44.37% 47.20% 44.91%

15dB 45.41% 37.37% 48.81% 47.00% 45.01%

10dB 35.69% 38.21% 43.28% 40.53% 38.88%

5dB 18.76% 27.19% 31.85% 26.69% 25.27%

0dB 7.77% 13.37% 26.63% 18.80% 15.70%

-5dB 3.10% 2.40% 15.92% 11.41% 7.84%

Average 24.65% 24.71% 35.04% 31.18% 28.31%

Table 10.1: Relative reduction in word error rate in percent on Set A of the Aurora 2 data

set. Soft information method compared to using a point estimate of clean speech. See

Tables D.13 and D.14 for absolute WER

10.7 Discussion

In this chapter we introduced a new paradigm for robust speech recognition. This

paradigm allows us to take into account the uncertainty of observations introduced by

noise.

In Chapter 3 we saw that the optimal classification strategy involves using p(Y|s)

rather than p(X̂|s), and gave results for a simple classifier. Here we have shown conclu-

sively that this holds for the more complex problem of robust speech recognition.

We used the Algonquin framework to show the promise of this method. However,

any method capable of estimating p(x|y)/p(x), p(s|y)/p(s) or p(y|s) can be used.

An important topic of future research is how to use the soft information paradigm in

conjunction with linear transforms across time and frequency.
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Conclusion

11.1 Summary and Contributions

In this thesis I advocated a probabilistic view of robust speech recognition. I discussed

the problem of classification of distorted features using an optimal classifier, and how

the generation of noisy speech can be represented as a generative graphical probability

model. By doing so, my aim was to build a conceptual framework that provides a unified

understanding of robust speech recognition, and to some extent bridges the gap between

a purely signal processing viewpoint and the pattern classification or decoding viewpoint.

The most tangible contribution of this thesis is the introduction of the Algonquin

method for robust speech recognition. It exemplifies the probabilistic method and en-

compasses a number of novel ideas. For example, it uses a probability distribution to

describe the relationship between clean speech, noise, channel and the resultant noisy

speech. It employs a Variational approach to find an approximation to the joint posterior

distribution which can be used for the purpose of restoring the distorted observations. It

also allows us to estimate the parameters of the environment using a Generalized EM

112
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method.

Another important contribution of this thesis is a new paradigm for robust speech

recognition, which we call uncertainty decoding. This new paradigm follows naturally

from the standard way of performing inference in the graphical probability model that

describes noisy speech generation.

To summarize:

• A general probabilistic view of speech recognition in adverse environments was

formulated that incorporates noise and channel distortion. This was done using the

formalism of graphical probability models.

• Standard methods for robust speech recognition were related to performing infer-

ence in this graphical probability model.

• A new view of the relationship between noisy speech, clean speech, noise and

channel in the log-spectrum and MFCC domains was presented. We showed how

uncertainty is introduced as a consequence of dimensionality reduction.

• As a result of this new view, the interaction likelihood was formulated, which

describes the relationship between noisy speech, clean speech, noise and channel

in a probabilistic way.

• In order to perform inference the graphical model for noisy speech a new robust-

ness method, Algonquin, based on variational inference was introduced. A number

of novel ideas are involved:

– Approximation of the interaction likelihood via the use of the Vector Taylor

Series.
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– Iteratively improving the approximation by updating the expansion point of

the Vector Taylor Series based on the mode of the approximate posterior.

– Approximating the joint conditional distribution with a Gaussian distribution.

The Algonquin framework was shown to perform considerably better than previous

methods.

• A novel method for learning the environmental parameters was introduced. The

negative relative entropy loss function of the variational method, lead to General-

ized EM method to update the parameters of the prior models.

• Finally, we introduce the soft information paradigm and showed how the Algo-

nquin method can be used within this paradigm.

11.2 Future Extensions

There are a number of issues yet to be explored in the Algonquin framework. The use of

time dynamics in the noise model may be important for dealing with noise with strong

temporal structure. Delta and acceleration features were not taken advantage of, al-

though they are known to be important. This is an important area of study. The method

described for learning the parameters of the environment in Chapter 9 is applicable to

batch processing of speech files. Although there are many applications that require batch

processing, more applications require online adaptation. This has yet to be explored

fully.

One of the key insights that lead to the Algonquin method was to approximate the

posterior p(x,n,h|yobs). It is possible to approximate the posterior using a number of
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other methods. We mentioned the use of Gaussian Basis Functions and efficient sam-

pling, but there are probably many more.

In the last Chapter we introduced the uncertainty decoding paradigm. One can envi-

sion a whole new field of study within robust speech recognition that takes advantage of

this new viewpoint.



Appendix A

Notational Conventions

x,X,x,X – Variable associated with clean speech. The variable can

appear in various domains. In this thesis the conversion

is to use x to designate the time domain signal, x to designate

a log-spectrum feature vector and xc to designate an MFCC

domain feature vector.

y, Y,y,Y – Variable associated with corrupted speech.

n,N,n,N – Variable associated with noise.

h,H,h – Variable associated with the channel.

z – A concatenated vector z = [xTnThT ]T .

x[m], y[m], n[m] – Time domain sample of the corrupted signal, clean signal and

noise signal respectively.

h[m] – Impulse response of the channel model.

y,x,n,h – Log-spectrum domain feature vectors for the corrupted

signal, clean signal and noise signal and channel respectively.

g(z) – Shorthand for x + h + ln(1 + exp(n− x− h))
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Gx – Matrix derivative of g w.r.t. x, used in the Taylors

Series Linearization of the interaction equation.

p(x) – Speech model distribution, i.e. the speech prior.

p(n) – Noise model distribution, i.e. the noise prior.

p(h) – Channel model distribution, i.e. the channel prior.

p – Usually joint or joint conditional distribution of x,n,h.

pl – Linearized joint or joint conditional distribution of x,n,h.

q – Approximate joint distribution of x,n,h used

in Variational Inference.

s – Designates the state of an HMM or the mixture component

of a Gaussian Mixture Model.

η – The mean vector of the q distribution.

ρ – The component weights of the q distribution.

Φ – The covariance matrix of a component of the q distribution.

µ – The mean vector of a distribution, usually of p(x) and or p(n).

π – Mixture weight of a distribution, usually of p(x) and or p(n).

Σ – The covariance of a distribution, usually of p(x) and or p(n).

Ψ – The covariance of the interaction equation.

F – The negative relative entropy.

K – Relative entropy.



Appendix B

Useful Identities

B.1 Gaussian Quadratic Integral Forms

The expectation of a quadratic form under a Gaussian is another quadratic form [70]. If

x is Gaussian distributed with mean η and variance Φ then,
∫

x

(x− µ)TΣ−1(x− µ)N(x; η,Φ) = (µ− η)TΣ−1(µ− η) + Tr[Σ−1Φ] (A-1)

If the original quadratic form has a linear function of x, the result it still simple:
∫

x

(Wx− µ)TΣ−1(Wx− µ)N(x; η,Φ)

= (µ−Wη)TΣ−1(µ−Wη) + Tr[WTΣ−1WΦ] (A-2)

B.2 Multiplication of Two Gaussians

The multiplication of two Gaussians N(a,A) and N(b,B) is:

N(a,A) · N(b,B) = zcN(c,C) (A-3)
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where

C = (A−1 + B−1)−1 (A-4)

c = CA−1a + CB−1b (A-5)

and

zc = (2π)−d/2|C|+1/2|A|−1/2|B|−1/2 exp

[
−1

2

(
aTA−1a + bTB−1b− cTC−1c

)]

(A-6)

where d is the dimension of a. In the univariate case, we rewrite succinctly:

N(y; a,A)N(y; b, B) = N(y; c, C)N(a; b, A + B) (A-7)

B.3 Change of Variables

The Gaussian random variable y with mean d + Dz can be rewritten as a distribution

over z:

N(y;d + Dz,E) = K · N
[
z; (DTE−1D)−1DTE−1(y − d), (DTE−1D)−1

]
(A-8)

where

K = |2πE|−1/2 · |2π(DTED)−1|1/2 (A-9)

Note that DTE−1D will be singular if the dimensions of z are higher than the dimensions

of y, i.e. this expression is ill defined.

B.4 Multiplication of Linear Likelihood and Gaussian

The following identity allows us to rewrite the product of the Gaussian speech prior p(x),

Gaussian noise prior p(n) and the Gaussian likelihood p(y|x, n) as a singe Gaussian

times a scaling factor.
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N(z; a,A)N(y;d + Dz,E) = L · N(z; c,C) (A-10)

where

C = (A−1 + DTE−1D)−1 (A-11)

c = C(A−1a + DTE−1(y − d)) (A-12)

and

L = (2π)
dz−dy

2 |E|−1/2|C|1/2|A|−1/2

exp

[
−1

2

(
aTA−1a + (y − d)TE−1(y − d)− cTC−1c

)]
(A-13)

where dz is the dimension of z and dy is the dimension of y.

B.5 Matrix Calculus Results

The following identities are useful when taking derivatives of the negative relative en-

tropy.

Matrix derivative of trace:
δ

δX
Tr[XA] = A (A-14)

Matrix derivative of determinant:

δ

δX
|X| = |X|X−T (A-15)

Vector derivative:
δ

δx
aTxb = bTa (A-16)

Vector derivative of quadratic form:

δ

δx
(Ax + b)TC(Dx + e) = ATC(Dx + e) + DTCT (Ax + b) (A-17)
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For symmetric matrices (e.g. covariance matrices) then:

δ

δx
(Ax + b)TC(Ax + b) = 2ATC(Ax + b) (A-18)



Appendix C

Derivations

C.1 Log-Spectrum Domain Algonquin

Here we derive the Algonquin algorithm in the log-spectrum domain using the variational

approach. This derivations is for and unfactorized q. Derivations for factorized versions

of q follow easily. Derivations of Algonquin on the spectrum domain as well as the

cepstrum domain are completely analogous.

We first define the d×1 column vectors x, n, h and y as the feature vectors for clean

speech, noise, the transfer function and corrupted speech, respectively.

The joint distribution over the noisy speech, clean speech, noise, channel distortion,

speech class and noise class is:

p(y,x,n,h, sx, sn, sh)

= N(y; g(z),Ψ)πsxN(x; µs
sx ,Σs

sx)πsnN(n; µn
sn ,Σn

sn)πshN(h; µh
sh ,Σh

sh) (A-1)

where µx
sx is a d × 1 vector of speech means, and Σs

sx is a (diagonal) d × d covariance
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matrix for speech, and similarly for the noise and channel function. πsx is that scalar

mixture weight for speech.

Defining 3d× 1 vector z = [xT nT hT ]T and s = {sx, sn, sh} we write succinctly:

p(y, z, s) = N(y; g(z),Ψ)πsN(z; µs,Σs) (A-2)

Since we will have to integrate over z we linearize the d× 1 function g(z) using the first

order Taylor series.

We require the function and it’s derivatives:

g(x,n,h) = x + h + ln(1 + exp(n− x− h)) (A-3)

Taking the derivative of the i−th component of the vector g with respect to the j−th

component of xj we find

dg(xi, ni, hi)

dxj
=

1

1 + exp(ni − xi − hi)
(A-4)

if i = j and 0 otherwise. Similarly, the derivative with respect to nj is:

dg(xi, ni, hi)

dxj
=

exp(ni − xi − hi)

1 + exp(ni − xi − hi)
(A-5)

The derivative with respect to hi is equal to the derivative with respect to xi.

We define the d× d matrices:

Gx(x,n,h) =
dg(x,n,h)

dx
= diag

[
dg(x1, n1, h1)

dx1
. . .

dg(xd, nd, hd)

dxd

]
(A-6)

Gn(x,n,h) =
dg(x,n,h)

dn
= diag

[
dg(x1, n1, h1)

dn1
. . .

dg(xd, nd, hd)

dnd

]
(A-7)

Gn(x,n,h) =
dg(x,n,h)

dh
= diag

[
dg(x1, n1, h1)

dh1
. . .

dg(xd, nd, hd)

dhd

]
(A-8)

and for notational purposes:

G(z) =
dg(z)

dz
=
[
Gx(x,n,h); Gn(x,n,h); Gh(x,n,h)

]
(A-9)
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which is d× 3d.

Thus, the vector Taylor series expansion of g(z) is:

gl(z) = g(z0) + G(z0)(z− z0) (A-10)

Now we can finally write the linearized posterior function:

pl(y, z, s) = N(y;g(z0) + G(z0)(z− z0),Ψ)πsN(z; µs, Σs) (A-11)

note that the linearized version of the posterior is a function of the linearization point z0.

The most general form of the approximate posterior is:

q(x,n,h|sx, sn, sh) = N

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

x

n

h

⎤

⎥⎥⎥⎦
;

⎡

⎢⎢⎢⎣

ηx
sx,sn,sh

ηn
sx,sn,sh

ηh
sx,sn,sh

⎤

⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎣

Φxx
sx,sn,sh Φxn

sx,sn,sh Φxh
sx,sn,sh

Φxn
sx,sn,sh Φnn

sx,sn,sh Φnh
sx,sn,sh

Φxh
sx,sn,sh Φnh

sx,sn,sh Φhh
sx,sn,sh

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠

(A-12)

or

q(z|s) = N(z; ηs,Φs) (A-13)

This form assumes that x, n and h are jointly Gaussian, and is exactly equivalent to

the linearized posterior. Cutting links in the factor graph for the q function produces

“factorized” versions of the posterior.

The posterior mixing proportions for classes sx, sn and sh are q(sx, sn, sh) =

ρsxsn,sh or succinctly ρs. The approximate posterior is given by q(x,n,h) =
∑

sx,sn,sh q(sx, sn, sh)q(x,n,h|sx, sn, sh), i.e. q(z) =
∑

s ρsq(z|s).

Having defined the exact form of the approximate posterior q and the linearized pos-

terior pl we can write the free energy:

F =
∑

s

∫
q(z, s) ln pl(y, z, s)dz−

∑

s

∫
q(z, s) ln q(z, s)dz (A-14)
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In order to derive the re-estimation formulas, we need to take the derivative of F with

respect to the parameters of q. But we first need to integrate over z. We rewrite Equation

(A-14) and look at each of the five terms separately.

F =
∑

s

∫

z

q(z, s) ln N(y;g(z0) + G(z0)(z− z0),Ψ) (A-15)

+
∑

s

∫

z

q(z, s) ln πs (A-16)

+
∑

s

∫

z

q(z, s) ln N(z; µs, Σs) (A-17)

−
∑

s

∫

z

q(z, s) ln ρs (A-18)

−
∑

s

∫

z

q(z, s) ln N(z; ηs, Φs) (A-19)

C.1.1 First Term: Equation (A-15)

Let’s look at the first term:

∑

s

∫
q(z, s) ln N(y;g(z0) + G(z0)(z− z0),Ψ)dz (A-20)

= −1

2

∑

s

ρs ln |2πΨ| (A-21)

− 1

2

∑

s

∫ [
ρsN(z; ηs,Φs)·

(y − g(z0)−G(z0)(z− z0))
TΨ−1(y − g(z0)−G(z0)(z− z0)))

]
dz (A-22)

Now we look at (A-22) which contains an integral of a Gaussian and a quadratic:

∫ [
N(z; ηs,Φs)·

(y − g(z0)−G(z0)(z− z0))
TΨ−1(y − g(z0)−G(z0)(z− z0))

]
dz (A-23)
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∫ [
N(z; ηs,Φs)·

(G(z0)z− (yobs − g(z0) + G(z0)z0))
TΨ−1(G(z0)z− (yobs − g(z0) + G(z0)z0)

]
dz

(A-24)

and using identity A-2 we get

((yobs − g(z0) + G(z0)(z0 − ηs))
TΨ−1((yobs − g(z0) + G(z0)(z0 − ηs))

+ Tr[G(z0)
TΨ−1G(z0)Φs] (A-25)

We can now plug this in to Equation (A-22) to complete the first term:

∑

s

∫
q(z, s) ln N(y;g(z0) + G(z0)(z− z0),Ψ)dz

= −1

2

∑

s

ρs ln |2πΨ|

−
∑

s

ρs((yobs − g(z0) + G(z0)(z0 − ηs))
TΨ−1((yobs − g(z0) + G(z0)(z0 − ηs))

+
∑

s

ρsTr[G(z0)
TΨ−1G(z0)Φs]. (A-26)

The remaining terms are much easier to handle.

C.1.2 Second Term: Equation (A-16)

The second term is simple:

∑

s

∫
[q(z, s) ln πs]dz =

∑

s

ρs ln πs (A-27)
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C.1.3 Third Term: Equation (A-17)

The third term has the same form as the first term:

∑

s

∫

z

q(z, s) ln N(z; µs,Σs) (A-28)

=
∑

s

∫

z

ρsN(z; ηs,Φs) ln |2πΣs|−
1
2 (A-29)

− 1

2

∑

s

∫

z

ρsN(z; ηs,Φs)(z− µs)
TΣ−1

s (z− µs) (A-30)

= −1

2

∑

s

ρs ln |2πΣs| (A-31)

− 1

2

∑

s

ρs(µs − ηs)
TΣ−1

s (µs − ηs) +
∑

s

Tr[Σ−1
s Φs], (A-32)

where we have used identity A-2 in the last step.

C.1.4 Fourth Term: Equation (A-18)

The fourth term is similar to the second term.

∑

s

∫
q(z, s) ln ρsdz =

∑

s

ρs ln ρs (A-33)
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C.1.5 Fifth Term: Equation (A-19)

∑

s

∫

z

q(z, s) ln N(z; ηs,Φs) (A-34)

=
∑

s

∫

z

ρsN(z; ηs,Φs) ln |2πΦs|−
1
2 (A-35)

− 1

2

∑

s

∫

z

ρsN(z; ηs,Φs)(z− ηs)
TΦ−1

s (z− ηs) (A-36)

= −1

2

∑

s

ρs ln |2πΦs| (A-37)

− 1

2

∑

s

ρs(ηs − ηs)
TΦ−1

s (ηs − ηs) +
∑

s

Tr[Φ−1
s Φs] (A-38)

= −1

2

∑

s

ρs ln |2πΦs| + 3d (A-39)

where the term (A-38) simplifies considerably.
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C.1.6 The Negative Relative Entropy F

Now we can gather the above terms to write the negative relative entropy:

F =− 1

2

∑

s

ρs ln |2πΨ|

−
∑

s

ρs

[
(yobs − g(z0) + G(z0)(z0 − ηs))

TΨ−1

((yobs − g(z0) + G(z0)(z0 − ηs)
]

(A-40)

+
∑

s

ρsTr[G(z0)
TΨ−1G(z0)Φs] (A-41)

+
∑

s

ρs ln πs (A-42)

− 1

2

∑

s

ρs ln |(2π)Σs|

− 1

2

∑

s

ρs

{
(µs − ηs)

TΣ−1
s (µs − ηs) + Tr[Σ−1

s Φs]
}

(A-43)

−
∑

s

ρs ln ρs (A-44)

+
1

2

∑

s

ρs ln |2πΦs|− 3d (A-45)

To derive the re-estimation formulas, we differentiate w.r.t the parameters of q.
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C.1.7 Derivation of η

Define G = G(z0) and g = g(z0). We differentiate with respect to ηs and equate to

zero:

0 =
δF

δηs

=
δ

δηs

(
− 1

2

∑

s

ρs

{
(µs − ηs)

TΣ−1(µs − ηs)
}

−1

2

∑

s

ρs

[
(yobs − g + G(z0 − ηs))

TΨ−1(yobs − g + G(z0 − ηs))
])

= −ρsΣ
−1(µs − ηs) (A-46)

−ρsG
TΨ−1(yobs − g + G(z0 − ηs)), (A-47)

where we have used identity A-18 in the last step. Now we solve for ηs and we find

ηs =
(
Σ−1 + GTΨ−1G

)−1 [
Σ−1µs + GTΨ−1(yobs − g + Gz0)

]
(A-48)

Alternately (add Σ−1z0 −Σ−1z0 term and re-arrange) we can write

ηs = z0 + Φ
[
Σ−1(µs − z0) + GΨ−1(y − g)

]
. (A-49)

C.1.8 Derivation of Φ

To find the variance, we differentiate F and set to 0:

0 =
δF

δΦs

=
δ

δΦs

(
−1

2

∑

s

ρsTr[Σ−1
s Φs]−

1

2

∑

s

ρsTr[GTΨ−1GΦs] (A-50)

+
1

2

∑

s

ρs ln |2πΦs|
)

(A-51)



APPENDIX C. DERIVATIONS 131

And using identities for derivatives of traces A-14 and determinants A-15, we arrive at

0 = −1

2
ρs(Σ

−1
s )T − 1

2
ρs[G

TΨ−1G]T +
1

2
ρs|Φs|−1|Φs|(Φ−1

s )T . (A-52)

And therefore:

Φs =
(
Σ−1

s + GTΨ−1G
)−1

. (A-53)

C.1.9 Derivation of ρ

When finding ρs we need to ensure that
∑

s ρs = 1 so we use a Lagrange multiplier

λ(
∑

s ρs − 1)). Again, differentiate and set to 0:

0 =
δ(F − λ(

∑
s ρs − 1))

δρs

= λ+ lnπs

− 1

2
ln |2πΣs|

− 1

2

{
(µs − ηs)

TΣ−1(µs − ηs) + Tr[Σ−1
s Φs]

}

− 1

2
ln |2πΨ|

− 1

2

{
(y − g + Gz0 −Gηs)

TΨ−1(y − g + Gz0 −Gηs) + Tr[GTΨ−1GΦs]
}

− (ln ρs + 1)

+
1

2
ln |2πΦs|. (A-54)

Notice that

Tr[Σ−1
s Φs] + Tr[GTΨ−1GΦs] = Tr[(Σ−1

s + GTΨ−1G)Φs] = Tr[I]. (A-55)
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Define:

Ls = lnπs

− 1

2
ln |2πΣs| +

1

2
ln |2πΦs|

− 1

2

{
(µs − ηs)

TΣ−1(µs − ηs)
}

− 1

2

[
(y − g + Gz0 −Gηs)

TΨ−1(y − g + Gz0 −Gηs)
]

+ const,

(A-56)

where all terms not dependent on s are gathered into the const term. The const term in

Equation (A-56) cancels when computing ρs below. Now rewrite Equation (A-54) and

solve for ρs:

ρs = exp(λ) exp(Ls) (A-57)

It follows that
∑

s

ρs = exp(λ)
∑

s

exp(Ls). (A-58)

And finally, solving for exp(λ) and plugging back into Equation (A-57) we get

ρs =
exp(Ls)∑
i exp(Li)

. (A-59)

The form of Ls differs from that derived in 8.17. However, when q is unfactorized these

two forms are equivalent.

The above derivation can be used as a template to derive the Algonquin algorithm

in the spectrum and cepstrum domains. The spectrum domain version suffers from the

problem of returning negative estimates of clean speech, similarly to Spectral Subtrac-

tion. The cepstrum domain version produces superior recognition results (see Table D.2)

to the log-spectrum version, but is considerably slower.



Appendix D

Results

This Appendix contains complete details of most of the results reported in the Thesis. In

addition, some results have been included that were not directly pertinent to the discus-

sion, but may be of interest. These include results for different feature sets (see Figure

D.1), as well as results for using the Algonquin algorithm in the cepstrum domain (see

Table D.2).

D.1 Comparison of Log-Spectrum and Cepstrum Fea-

tures

Figure D.1 shows the accuracy of four different feature sets. The effectiveness of MFCC

features with delta and acceleration is clear from the plot. Notice that the performance

of all features for clean speech is similar. At 10dB SNR, using Delta and Acceleration

features gives substantial gains, while using Filter Bank features is considerably worse.
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Figure D.1: The plot shows the results for using MFCC features without delta and accel-

eration, with delta but not acceleration and with delta and acceleration, and Filter bank

features.

D.2 Multicondition Results

An effective way of dealing with noisy speech is simply to train on the noisy data. This

is called matched training. Recently, it has become clear that one can obtain even better

results by first running a cleaning algorithm on the multicondition training set, which

consists of speech files with noise at different SNRs, and different types of noise. Then

the acoustic models are re-trained on the cleaned training set. This is called multicondi-

tion training.
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In Table D.1 we show the result of using Algonquin (256 mixture speech model,

1 mixture noise model) to clean the multicondition training set, and then use the new

acoustic models for recognizing set A. Note that we are using the same cleaned files as

in Table 8.1. The average accuracy increases to 86.57%. This is a reduction in Word

Error Rate from the baseline (82.22%) of 24.5%.

Subway Car Babble Exhib. Average

Clean 98.83 98.43 98.30 98.77 98.58

20 dB 97.42 97.37 98.15 97.38 97.58

15 dB 95.64 95.68 97.88 95.68 96.22

10 dB 91.07 92.41 95.62 92.44 92.89

5 dB 80.84 81.86 90.07 85.87 84.66

0 dB 55.36 52.51 68.86 69.30 61.51

-5 dB 25.24 19.26 29.14 39.46 28.27

Average 84.07 83.97 90.12 88.13 86.57

Table D.1: Accuracy for Set A. Log-Spectrum domain MMSE-Algorithm. Recognition

using models trained on multicondition data. The training set was cleaned using a single

mixture noise model estimated using the first 20 frames. A 256 mixture speech model

was used.

D.3 Cepstrum Domain MMSE Algonquin

The Algonquin algorithm can be formulated in the cepstrum domain. The recognition

results for this algorithm are shown in Table D.2. The recognition result of 85.25% is

comparable to an accuracy of 82.22% in the log-spectrum domain. This is a relative

reduction in WER of 17.04%.
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Subway Car Babble Exhibition Average

Clean 98.74% 98.70% 98.75% 99.01% 98.80%

20dB 97.24% 97.52% 98.54% 97.01% 97.58%

15dB 94.78% 96.43% 97.44% 95.25% 95.97%

10dB 89.41% 92.56% 93.77% 91.79% 91.88%

5dB 80.47% 80.44% 85.57% 82.66% 82.28%

0dB 60.15% 49.94% 59.02% 65.04% 58.54%

-5dB 28.83% 19.38% 20.91% 35.14% 26.06%

Average 84.41% 72.71% 86.87% 86.35% 85.25%

Table D.2: Accuracy for Set A. Cepstrum domain MMSE-Algonquin. The speech model

contained 256 mixtures. Single component noise model estimated from the first 20

frames.

Subway Car Babble Exhibition Average

Clean 98.93 99.12 98.99 99.32 99.09

20 dB 96.13 97.88 98.36 97.01 97.34

15 dB 92.54 95.65 97.08 94.57 94.96

10 dB 84.80 90.21 93.32 89.39 89.43

5 dB 68.74 75.15 84.16 80.07 77.03

0 dB 43.63 46.07 59.53 60.07 52.33

-5 dB 18.42 16.69 26.69 33.14 23.73

Average 77.17 80.99 86.49 84.22 82.22

Table D.3: Accuracy for Set A. Log-Spectrum domain MMSE-Algorithm after 2 itera-

tions. The speech model contained 256 mixtures. A single component noise model was

used which was estimated from the first 20 frames of each file.
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Subway Car Babble Exhib. Ave.

Clean 98.62 98.55 98.81 99.11 98.77

20 dB 93.77 94.98 96.72 94.35 94.96

15 dB 87.29 89.51 94.63 89.20 90.16

10 dB 76.27 78.20 87.21 79.51 80.30

5 dB 58.70 58.31 71.67 63.96 63.16

0 dB 34.33 30.29 41.37 39.49 36.37

-5 dB 16.18 13.72 16.85 20.80 16.89

Average 70.07 70.26 78.32 73.30 72.99

Table D.4: Accuracy for Set A. Using 4 mixture noise model. Log-Spectrum domain

MMSE-Algorithm. The speech model contained 256 mixtures. A single component

noise model was used which was estimated from the first 20 frames of each file.

Subway Car Babble Exhib. Ave.

Clean 98.71 98.91 98.90 99.26 98.94

20 dB 95.73 97.40 98.12 96.30 96.89

15 dB 91.46 94.74 96.45 93.09 93.94

10 dB 82.62 88.85 91.98 85.78 87.31

5 dB 65.55 71.77 80.41 72.66 72.60

0 dB 39.94 39.12 51.69 50.05 45.20

-5 dB 17.19 15.54 20.52 25.21 19.62

Average 75.06 78.38 83.73 79.58 79.19

Table D.5: Accuracy for Set A. Using 8 mixture noise model. Log-Spectrum domain

MMSE-Algorithm.
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Subway Car Babble Exhib. Ave.

Clean 98.74 99.00 98.90 99.29 98.98

20 dB 96.22 98.04 98.48 96.76 97.38

15 dB 92.42 95.62 96.93 94.05 94.76

10 dB 84.34 90.81 93.05 88.34 89.13

5 dB 68.10 74.43 82.79 77.82 75.78

0 dB 41.11 42.38 55.59 56.16 48.81

-5 dB 16.76 16.23 22.76 29.22 21.24

Average 76.44 80.26 85.37 82.63 81.17

Table D.6: Accuracy for Set A. Using 16 mixture noise model. Log-Spectrum domain

MMSE-Algorithm.

Subway Car Babble Exhib. Ave.

Clean 98.89 99.06 99.11 99.29 99.09

20 dB 96.25 97.91 98.48 97.19 97.46

15 dB 92.32 96.34 97.14 94.11 94.98

10 dB 84.07 91.11 93.05 88.52 89.19

5 dB 67.39 75.18 83.27 78.43 76.07

0 dB 41.85 44.41 56.84 58.07 50.29

-5 dB 16.76 16.44 24.46 31.63 22.32

Average 76.38 80.99 85.76 83.26 81.60

Table D.7: Accuracy for Set A. Using 32 mixture noise model. Log-Spectrum domain

MMSE-Algorithm.
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Subway Car Babble Exhib. Ave.

Clean 98.96 99.09 98.96 99.32 99.08

20 dB 96.28 97.85 98.48 97.04 97.41

15 dB 92.69 95.86 97.05 94.45 95.01

10 dB 84.46 90.51 92.96 89.26 89.30

5 dB 68.07 75.94 83.54 79.33 76.72

0 dB 43.32 45.28 58.87 59.67 51.78

-5 dB 17.90 16.26 25.98 32.15 23.07

Average 76.96 81.09 86.18 83.95 82.05

Table D.8: Accuracy for Set A. Using 64 mixture noise model. Log-Spectrum domain

MMSE-Algorithm.

Subway Car Babble Exhib. Ave.

Clean 98.96 99.15 99.02 99.26 99.10

20 dB 96.19 97.85 98.45 96.79 97.32

15 dB 92.69 95.89 96.90 94.66 95.03

10 dB 84.89 89.96 93.05 88.71 89.15

5 dB 69.05 74.97 83.75 79.94 76.93

0 dB 43.60 46.16 58.87 60.10 52.18

-5 dB 18.39 16.99 26.42 32.49 23.57

Average 77.28 80.97 86.20 84.04 82.12

Table D.9: Accuracy for Set A. Using 128 mixture noise model. Log-Spectrum domain

MMSE-Algorithm.
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Subway Car Babble Exhib. Ave.

Clean 98.93 99.09 99.02 99.32 99.09

20 dB 96.71 97.91 98.45 97.35 97.60

15 dB 93.98 95.65 97.52 95.50 95.66

10 dB 87.26 90.81 93.86 90.31 90.56

5 dB 74.12 77.60 86.04 81.58 79.83

0 dB 51.83 46.80 62.72 61.46 55.70

-5 dB 25.08 16.90 28.93 35.33 26.56

Average 80.78 81.75 87.72 85.24 83.87

Table D.10: Accuracy for Set A. 2 Gaussian mixture used to approximate single Gaus-

sian. Log-Spectrum domain MMSE-Algorithm.

Subway Car Babble Exhib. Ave.

Clean 98.93 99.09 99.02 99.32 99.09

20 dB 96.65 97.85 98.48 97.25 97.56

15 dB 94.29 95.62 97.46 95.62 95.75

10 dB 87.84 90.54 94.01 90.62 90.75

5 dB 75.53 76.96 86.52 81.27 80.07

0 dB 54.13 46.25 62.42 61.46 56.07

-5 dB 27.51 16.93 28.30 35.30 27.01

Average 81.69 81.44 87.78 85.24 84.04

Table D.11: Accuracy for Set A. 4 Gaussian mixture used to approximate single Gaus-

sian. Log-Spectrum domain MMSE-Algorithm.
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Subway Car Babble Exhib. Ave.

Clean 96.50 96.22 96.93 96.95 96.65

20 dB 97.02 98.34 98.45 97.78 97.90

15 dB 94.50 97.01 97.79 95.68 96.25

10 dB 87.53 94.14 94.48 92.41 92.14

5 dB 75.90 84.04 86.76 84.97 82.92

0 dB 53.45 56.98 64.27 67.54 60.56

-5 dB 25.70 21.95 26.96 38.82 28.36

Average 81.68 86.10 88.35 87.68 85.95

Table D.12: Accuracy for Set A. Upper bound for 1 mixture noise model, noise esti-

mated from true noise. Noise was found by subtracting the samples of each clean speech

file from the samples of the corresponding noisy file. Log-Spectrum domain MMSE-

Algorithm. The speech model contained 256 mixtures.

Subway Car Babble Exhibition Average

Clean 4.33% 4.93% 5.04% 4.44% 4.69%

20dB 20.11% 9.82% 12.17% 16.08% 14.54%

15dB 29.75% 15.84% 16.43% 23.17% 21.30%

10dB 43.63% 27.06% 24.40% 30.82% 31.48%

5dB 56.65% 45.83% 33.31% 43.35% 44.78%

0dB 73.84% 68.29% 51.63% 57.98% 62.93%

-5dB 87.23% 88.21% 75.90% 78.06% 82.35%

Average 44.80% 42.51% 27.59% 34.28% 35.01%

Table D.13: WER for Set A. MMSE-Algonquin. Single component noise model esti-

mated from the first 20 frames. Log-spectrum acoustic models were used in the recog-

nizer, which accounts for the high WER.
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Subway Car Babble Exhibition Average

clean 5.10% 5.35% 5.34% 4.94% 5.18%

20dB 10.35% 6.44% 6.77% 8.49% 8.01%

15dB 16.24% 9.92% 8.41% 12.28% 11.71%

10dB 28.06% 16.72% 13.84% 18.33% 19.24%

5dB 46.02% 33.37% 22.70% 31.78% 33.47%

0dB 68.10% 59.16% 37.88% 47.08% 53.05%

-5dB 84.53% 86.09% 63.82% 69.15% 75.90%

Average 33.75% 35.28% 17.92% 23.59% 25.10%

Table D.14: WER for Set A, SOFT-Algonquin. Single component noise model estimated

from the first 20 frames. Log-spectrum acoustic models were used in the recognizer,

which accounts for the high WER.
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